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Abstract. The operator content of the Baxter–Wu model with general toroidal boundary
conditions is calculated analytically and numerically. These calculations were done by relating
the partition function of the model with the generating function of a site-colouring problem in a
hexagonal lattice. Extending the original Bethe-ansatz solution of the related colouring problem
we are able to calculate the eigenspectra of both models by solving the associated Bethe-ansatz
equations. We have also calculated, by exploring the conformal invariance at the critical point, the
mass ratios of the underlying massive theory governing the Baxter–Wu model in the vicinity of its
critical point.

1. Introduction

The Baxter–Wu model is the simplest non-trivial spin model with three-spin interactions. Its
Hamiltonian is defined on a triangular lattice by

H = −J
∑
〈ijk〉

σiσjσk (1)

where the sum extends over the elementary triangles,J is the coupling constant andσi = ±1
are Ising variables located at the sites. Historically this model was introduced by Wood and
Griffiths in 1972 [1], as an example of a model exhibiting an order–disorder phase transition
and not having a global up–down spin reversal symmetry. This model is self-dual [1, 2] with
the same critical temperature as that of the Ising model on a square lattice. In 1973 Baxter
and Wu [3] related the partition function of this model, in the thermodynamic limit, with the
generating function of a site colouring problem on a hexagonal lattice. Solving this colouring
problem through a generalized Bethe-ansatz they calculated the leading exponents [3]α = 2

3,
µ = 2

3 andη = 1
4 of the Baxter–Wu model. The equality of these exponents with those of the

4-state Potts model [4–6] added to the fact that both models have the same fourfold degeneracy
of the ground state, induce the conjecture that they share the same universality class of critical
behaviour. This conjecture is interesting since, contrary to the Baxter–Wu model, the 4-state
Potts model is exactly integrable only at its critical point. However, from numerical studies
of these models on a finite lattice it is well known that both models show different corrections
to finite-size scaling (at the critical point). Whereas in the 4-state Potts models [7–10] these
corrections are governed by a marginal operator, producing logarithmic corrections with the
system size, which makes it enormously difficult to extract reliable results from finite-size
studies of the model, this is not the case in the Baxter–Wu model [11–13].
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Nowadays with the developments of conformal invariance applied to critical phenomena
[13] the classification of different universality classes of critical behaviour becomes clear. Two
models belong to the same universality class only if they share the same operator content, not
only the leading critical exponents. The operator content of the 4-state Potts model was already
conjectured from finite-size studies in its Hamiltonian formulation [14] and can be obtained by a
Z(2) orbifold of the Gaussian model in a special compactification radius (see [15] for a review).
In this paper we numerically and analytically calculate the operator content of the Baxter–Wu
model with several boundary conditions. Part of our numerical calculation was announced in
[12]. In order to do this calculation we generalize the original Bethe-ansatz solution of the
related site-colouring problem with periodic boundary condition. This is necessary because
this solution only gives part of the eigenspectrum of the associated transfer matrix. We also
extend our Bethe-ansatz solution to other cases where the site-colouring problem is not on a
periodic lattice. This extension enables us to obtain the operator content of this model and the
Baxter–Wu model for more general toroidal boundary conditions. Our numerical study was
done by numerically solving the Bethe-ansatz equations and the analytical work was done by
studying these equations using standard techniques based on the Wiener–Hopf method [16].

We believe that after the Ising model the Baxter–Wu model is the simplest spin model that
can be solved exactly for arbitrary temperatures. We explore this solution in order to obtain
the mass spectrum of the massive theory describing fluctuations near the critical point.

The layout of this paper is as follows. In section 2 we introduce a site-colouring problem
on a hexagonal lattice whose generating function is exactly related, in the bulk limit, with
the Baxter–Wu model. Our construction is valid for some toroidal boundary conditions,
generalizing the original construction [3] for periodic lattices. In section 3 we present the
transfer matrix associated to the colouring problem and calculate its eigenvalues by the Bethe-
ansatz. In section 4 the operator content of the Baxter–Wu model and the related site-colouring
problem is obtained. The mass spectrum of the massive field theory governing the thermal
and magnetic perturbations is calculated in section 5. Finally, our conclusions are present
in section 6 and the analytical calculation of some of the conformal dimensions of the site-
colouring problem is presented in the appendix.

2. The Baxter–Wu model and the related site-colouring problem

In this section we relate the Baxter–Wu model with general toroidal boundary conditions with
a site-colouring problem(SCP) on the hexagonal lattice. The construction presented here
generalizes those presented by Baxter and Wu [3] for the periodic case.

Let us consider a triangular lattice withL (M) rows (columns) along the horizontal
(vertical) direction, respectively. For convenience we takeL as a multiple of three, and
decompose the lattice in three triangular sublattices formed by the points denoted by◦,� and
4 in figure 1. We attach at each site of a sublattice Ising variables{σ ◦}, {σ�} and{σ4}, and
the Baxter–Wu model, with the Hamiltonian (1), is given in terms of the simplest three-body
interactions with one spin in each sublattice.

The model has a non-localZ(2)×Z(2) symmetry corresponding to the global change of
variables in two of the sublattices, i.e.

σ4 → aσ4 σ ◦ → bσ ◦ σ�→ abσ� (a = b = ±1).

This fact implies that at sufficiently low temperatures the model have a fourfold degenerate
ground state. Creating, at low temperatures, domain walls connecting those different ground
states, we see that, in fact, the symmetry of those long-range excitations isD(4), as in the 4-state
Potts model. This reasoning suggests that critical fluctuations of both models are described in
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Figure 1. A triangular lattice withL = 3 rows andM = 6 columns. The Baxter–Wu model is
defined on the triangular lattice formed by the points◦, � and4, and the link variables{λ} are
defined on the hexagonal lattice formed by the points�and◦. The site-colouring problem (SCP)
is defined on the hexagonal lattice formed by the points4 and◦. The open symbols◦,� and4
denote the bordering sites related through (2) with the bulk ones (full symbols).

terms of the same quantum field theory. In order to do a detailed study of several sectors of
this underlying field theory we consider the Baxter–Wu model with general toroidal boundary
conditions compatible with itsZ(2)× Z(2) symmetry:

σ
4
i,j = aσ4i+L,j σ ◦i,j = bσ ◦i+L,j σ�i,j = abσ�i+L,j (2)

wherea, b = ±1. In figure 1 the symbols◦, � and4 denote the bordering sites which are
related by (2) to the bulk ones (full symbols). Imposing a periodic boundary condition along
the vertical direction, the partition function of the modelZBWL×M can be written as

ZBWL×M = Tr(T̂ BW(a,b))
M (3)

whereT̂ BW(a,b) is the associated row-to-row transfer matrix. Its elements〈σ1, . . . , σL|T̂ BW(a,b)|σ ′1,
. . . , σ ′L〉 are given by the Boltzmann weights generated by the spin configurations{σ1, . . . , σL}
and{σ ′1, . . . , σ ′L} of adjacent rows and are given by

〈σ1, . . . , σN |T̂ BW(a,b)|σ ′1, . . . , σ ′N 〉 = exp

(
K

L∑
j=1

σ ′j σj+2(σj+1 + σ ′j+1)

)
(4)

with K = J
kBT

, and on the right-hand side the appropriate boundary condition(a, b) is taken
into account.

Following Baxter and Wu [3], we can relateZBWL×M to the partition function or generating
functionZSCPN×M of a SCP on a honeycomb lattice withN = 2L

3 rows andM columns. In
order to do this, it is convenient to define link variables{λ} at the links of the hexagonal lattice
formed by the sublattices◦ and� (heavy lines in figure 1). These variables are given by the
product of the site variables at the ends of the link (λ = σ�σ ◦). In terms of these new variables
the Hamiltonian is given by

H = −J
∑
i∈4

σ
4
i (λ1 + λ2 + · · · + λ6) (5)
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where the summation is only over the sublattice4 andλ1, λ2, . . . , λ6 are the link variables
surrounding a given site variableσ4i . Taking into account the boundary conditions (2), the
partition function, in terms of these new variables, can be written as

ZBWL×M =
∑
{σ4,λ}

∏
4
{exp{Kσ4(f1λ1 + f2λ2 + · · · + f6λ6)} 12(1 +λ1λ2 . . . λ6)} (6)

where the product extends over all the elementary hexagons formed by the sites in sublattices
� and◦, and surrounding a site variableσ4. The factor1

2(1 +λ1λ2 . . . λ6) in (6) is necessary
since the variables{λ} are not independent. The factorsfi (i = 1, 2, . . . ,6) in (6) are constants
defined on the links of the hexagonal lattice (�–◦) and depend on their relative location (see
figure 1). If both ends of a linki (with corresponding variableλi) belongs to the bulk of the
lattice (•– ), fi = 1; if one of its ends is on the border (◦– or •–�), fi = ab; and if
both ends are on the border (◦–�), fi = a. To proceed it is convenient [3] to rewrite the last
product in (6), surrounding each lattice site4, as

1
2(1 +λ1λ2 . . . λ6) =

∑
µ4=±1

g(λ1, µ
4)g(λ2, µ

4) . . . g(λ6, µ
4) (7)

where

g(λ, µ) = 2−7/6(λ +µ + |λ− µ|). (8)

Substituting the expression (7) into equation (6) the partition function will be expressed in
terms of a single sublattice4with site variables{σ4} and{µ4}, and link variables{λ}. Taking
into account the boundary factors, it is straightforward to write

ZBWL×M =
∑
{σ4,µ4}

∏
〈i,j〉

{ ∑
λi,j=±1

exp(K(σ4i + σ4j )λi,j )g(λi,j , µ
4
i )g(λi,j , µ

4
j )

}
(9)

where〈i, j〉 are links on the hexagonal lattice formed by the sublattices� and◦ (see figure 1).
In order to derive (9) we are forced to restrict ourselves only to boundary conditions (2) where
a = b = ±1. Fortunately this does not restrict our analysis since, due to theD(4) symmetry
of the model, the eigenspectra of the transfer matrices with boundary conditiona 6= b and
a = b = −1 are degenerate. Summing over{λ} in (9) we obtain

ZBWL×M =
∑
{σ4,µ4}

∏
〈i,j〉

w(σ
4
i , µ

4
i ; σ4j , µ4j ) (10)

where

w(σi, µi; σj , µj ) = 2−1/3[exp(K(σi + σj )) +µiµj exp(−K(σi + σj ))]. (11)

Finally, following Baxter and Wu [3], we now associate the above partition function to
the generating function of a SCP with eight colours. We associate odd colours 1, 3, 5 and 7 at
a given site4 according to the values of the variables(σ4, µ4) attached at the site:

(++)→ 1 (−+)→ 3 (−−)→ 5 (++)→ 7. (12)

The relation (11) tell us that links connecting colours 3, 7 and 1, 5 should be forbidden in the
SCP. This constraint can be easily implemented [3] by introducing the even colours 2, 4, 6 and
8 on the sublattice◦, forming with the sublattice4 an hexagonal lattice withN = 2

3L (M)

sites in the horizontal (vertical) direction. The constraint is that all nearest-neighbour colours
on this hexagonal lattice must differ by±1 (modulo 8). ForM → ∞, the partition function
ZBWL,M is then related to the generating functionZSCPN,M , given by

ZSCPN,M = ξM
∑
{C}
z
n1
1 z

n2
2 . . . z

n8
8 = ZBWL,M (13)
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where n1, n2, . . . , n8 is the number of sites coloured with colour 1, 2, . . . ,8 in a given
configurationC andξ = (2 sinh(4K))N/2. The fugacitieszi (i = 1, 2, . . . ,8) are obtained
from (11)

z1 = z3 = z5 = z7 = 1
z−1

2 = z4 = z−1
6 = z8 = sinh(2K) ≡ t. (14)

The critical point of the Baxter–Wu model and of the SCP is given by the self-dual point
t = tc = 1 [3]. Concerning the boundary conditions, the relations are as follows. TheZBWL,M
with periodic boundary condition(a = b = 1 in (2)) is related withZSCPN,M , also with periodic
lattice. The boundary conditiona = b = −1 in (2) is related to a boundary condition in the
SCP such that if at site(1, j) we have a colour variablec1,j = 1, 3, 5 or 7 at site(N + 1, j),
the colour variable should becN+1,j = 3, 1, 7 and 5 respectively. We do not need to mention
even colours sinceN is even (see figure 1).

3. The transfer matrix and the Bethe-ansatz of the SCP

In this section we derive the row-to-row transfer matrix of the SCP and generalize its Bethe-
ansatz solution presented by Baxter and Wu [3]. The solution presented in [3], as we shall see,
only gives part of the eigenspectra of the transfer matrix of the SCP, with periodic boundary
conditions. Here we extend the solutions for the periodic case and also derive the Bethe-ansatz
equations for the more general boundary condition

ci,j = ci+N,j + 2κ (mod 8) κ = 0, 1, 2 or 3 (15)

along the horizontal direction. The periodic case corresponds toκ = 0. Following [3], for a
given configuration{ci,j } of colours on the hexagonal lattice, we say we have a dislocation on
a given link of the lattice wherever the colour on the right end of the link is smaller (modulo
8) than that on the left end. In figure 2 we show two configurations with the corresponding
dislocations (dotted lines) for a lattice with widthN = 4. In figure 2(a) the lattice is periodic
(κ = 0) and in figure 2(b) the boundary condition is given by (15) withκ = 1.

The generating function of the SCP can be written as

ZSCPN,M = Tr(T̂ SCP(κ) )M (16)

where T̂ SCP(κ) is the associated row-to-row transfer matrix. This transfer matrix has

elements〈{C}|T̂ SCP(κ) |{C ′}〉 given by the product of the Boltzmann weights due to the colour
configurations{C} = {c1, c2, . . . , cN } and{C ′} = {c′1, c′2, . . . , c′N } of two adjacent rows. If
the configuration produced by{C} and{C ′} contains only colours differing by±1 (modulo 8),
we have

〈{C}|T̂ SCP(κ) |{C ′}〉 = ξ
N∏
i=1

(z(ci)z(c
′
i ))

1/2 (17)

with fugacitieszi defined in (14). On the other hand, if the configuration does not satisfy this
constraint,〈{C}|T̂ SCP(κ) |{C ′}〉 = 0. It is simple to see that this requirement implies, for arbitrary
values ofκ in (15), the conservation of the numbern of dislocations along the vertical direction.
Consequently, the Hilbert space associated toT̂ SCP(κ) can be separated into block-disjoint sectors
labelled by the values ofn. The possible values ofn depend on the boundary condition (15).
Forκ = 0, 2 (1, 3) they are even (odd), and are given bynj , where

06 nj = N − κ − 4j 6 2N j = 0,±1± 2, . . . . (18)

The colour configurations{C}and{C ′}, in a sector withndislocations, can be conveniently
expressed by the sets(m;X) = (m; x1, x2, . . . , xn) and (m′;X′) = (m′; x ′1, x ′2, . . . , x ′n),
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Figure 2. Examples of configurations for the SCP with lattice sizeN = 4. The dislocations are
represented by dotted lines. In (a) the configurations(m;X) = (1; 2, 3, 4, 4) and (m′;X′) =
(3; 2, 2, 3, 4) are in the sectorn = 4 (κ = 0). In (b) the configurations(m;X) = (1; 2, 3, 4) and
(m′;X′) = (3; 2, 2, 2) belong to the sectorn = 3 (κ = 1).

respectively. The odd numbersm and m′ give the colour at the first site and the sets
X ≡ (x1, x2, . . . , xn) andX′ ≡ (x ′1, x

′
2, . . . , x

′
n) give the position of the dislocations on

the row. The setsX andX′ should satisfy

16 x1 6 x2 6 · · · 6 xn 6 N 16 x ′1 6 x ′2 6 · · · 6 x ′n 6 N (19)

and should have no more than one repeated value ofx or x ′ if they are odd, or more than
three repeated values if they are even. In figure 2(a) we show the configurations(m;X) =
(1; 2, 3, 4, 4) and(m′;X′) = (3; 2, 2, 3, 4)which belong to the sector withn = 4 and periodic
boundary condition. In figure 2(b) we show the configurations(m;X) = (1; 2, 3, 4) and
(m′;X′) = (3; 2, 2, 2) belonging to the sector withn = 3 in the lattice with boundary
conditionκ = 1 in (15) and widthN = 4. Two configurationsX = (x1, x2, . . . , xn) and
X′ = (x ′1, x ′2, . . . , x ′n) are connected through the operatorT̂ SCP(κ) if beyond (19){

x ′j = xj − 1 if xj odd
x ′j = xj , xj − 1, xj − 2 if xj even.

(20)

In the casexi = xi+1 we have an additional constraintx ′i 6= x ′i+1. We should notice, for arbitrary
boundary condition, the identification

X = (0, x2, x3, . . . , xn) = (x2, x3, . . . , xn, N). (21)

The transfer matrix, in a given sector withn dislocations is now given by

〈m,X|T̂ SCP(κ) |m′, X′〉 = ξz
1−(−1)κ

4
m+1

n∏
j=1

w(m + xj + x ′j − 2j) w(m) = (zmzm+1)
1/2 (22)

if X andX′ satisfy (19) and (20), and is zero otherwise. In the sector withn dislocations the
eigenvectorsψ(n) of T̂ SCP(κ) , with eigenvalue3 can be written as

ψ(n) =
∑
{m,X}

z
− 1−(−1)κ

8
m+1 fm(x1, x2, . . . , xn)|m;X〉 (23)
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where the summation is restricted to the configurations withn dislocations, and
fm(x1, x2, . . . , xn) are unknown amplitudes. The eigenvalue equation forT̂ SCP(κ) is given by

ξ

∗∑
X′

( n∏
j=1

w(m + xj + x ′j − 2j)

)
fm+2(X

′) = 3fm(X) (24)

where the asterisk indicates thatX andX′ satisfy the conditions (19) and (20). The relation
(21) implies that in (24) the amplitudes havingx ′1 = 0 should be replaced by the boundary
condition

fm+2(0, x
′
2, x
′
3, . . . , x

′
n) = z

1−(−1)κ

4
m+1 fm(x

′
2, x
′
3, . . . , x

′
n, N). (25)

Due to the values of the fugacities (14) it is simple to see thatT̂ SCP(κ) , besides conserving
the number of dislocations, also has an additionalZ(2) symmetry (eigenvaluesε = ±1), since
adding 4 (modulo 8) to all colours in a given configuration does not change its weight in the
generating function, that is

fm+4(X) = εfm(X). (26)

Following Baxter and Wu [3] we assume the following Bethe-ansatz for the amplitudes:

fm(X) =
∑
P

a(P )φP1(m− 2, x1) . . . φPn(m− 2n, xn) (27)

where the summation is over all then! permutationsP = {P1, P2, . . . , Pn} of integers
{1, 2, . . . , n}. We require the existence ofn wavenumberskj (j = 1, 2, . . . , n) and signs
εj (j = 1, 2, . . . , n) such that

φj (m, x) = εjφj (m + 4, x) =
{
aj,m exp(ikjx) x odd

bj,m exp(ikjx) x even.
(28)

Observe that theZ(2)-parity eigenvalue of the wavefunction is given byε = ∏n
j=1 εj , and it

is even or odd depending on the numbers of negative values ofεj . The Bethe-ansatz solution
presented by Baxter and Wu [3] only gives the symmetric eigenvalues (ε = 1), for periodic
boundary conditions (κ = 0). We can follow the same procedure as in [3] in order to derive
the Bethe-ansatz equations. We have to consider various possible choices ofX to determine
the eigenvalue3.

First, let us consider the case where all dislocations are located at distinct positions, i.e.,
x1 6= x2 6= · · · 6= xn. Equation (24) is then replaced by∑

x ′
w(m + x + x ′)φj (m + 2, x ′) = λjφj (m, x) j = 1, . . . , n (29)

where we have denoted

3 = ξλ1 . . . λn. (30)

Actually, equation (29) represents two equations corresponding tox odd or even and can be
written as

Tj,m+2Vj,m+2 = λjVj,m (31)

where

Tj,m+2 =
(

0 αj,m+1

αj,m−1 Aj,m

)
Vj,m =

(
aj,m
bj,m

)
(32)

with

αj,m = w(m) exp(−ikj ) Aj,m = w(m) +w(m− 2) exp(−2ikj ). (33)
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Using the fact that(
aj,m−2

bj,m−2

)
= εj

(
aj,m+2

bj,m+2

)
it is simple to see thatλj can be obtained from the eigenvalue equation

(Tj,mTj,m+2)Vj,m+2 = λ2
j εjVj,m+2.

Solving for the eigenvalues ofTj,mTj,m+2 we see thatλj does not depend on the value ofm (as
it is expected) and satisfies

λ4
j − εjλ2

j [exp(−i4kj ) +1 exp(−2ikj ) + 1] + exp(−4ikj ) = 0 (34)

where1 = t + 1/t . The solution of (34) is given byλj = √εj exp(e
(sj )

j − ik
(sj )

j ), with

e
(sj )

j = 1
2 ln

(
xj + sj

√
x2
j − 1

)
xj = cos(2k

(sj )

j ) +1 (35)

andsj = ±1. Equation (31) gives the relations

aj,m+2 = εjαj,m−1bj,m/λj

bj,m+2 = √εj�j,mbj,m
aj,m = √εjαj,m+1�j,mbj,m/λj

(36)

where

�j,m = εj√εjA−1
j,m(λj − εjα2

j m−1/λ
−1
j ). (37)

It is important to verify that�j,m+2�j,m = 1, so that att = tc = 1,�2
j,m = 1.

Secondly, let us consider the case where two even dislocation positionsx coincide. For
convenience supposex1 = x2 = x (even). If we require that the ansatz (27) satisfies (24) with
eigenvalue given by (30) and (35) the equation

∗∑
x ′1,x

′
2

w(m + x + x ′1− 2)w(m + x + x ′2 − 4)fm+2(x
′
1, x
′
2) = λ1λ2fm(x, x) (38)

must be fulfilled, where

fm+2(x1, x2) = a(1, 2)φ1(m, x1)φ2(m− 2, x2) + a(2, 1)φ2(m, x1)φ1(m− 2, x2) (39)

and the asterisk in equation (38) indicates summation over the possible configurations
(x ′1, x

′
2) = (x − 2, x − 1), (x − 2, x), (x − 1, x). Using (28), (32), (34) and (36) in (38)

we obtain, after some algebra (the same algebra as in [3]), that the ratio

B̃12 ≡ a(1, 2)

a(2, 1)
= −
√
ε2√
ε1

cosh(e(s1)1 + ik2)

cosh(e(s2)2 + ik1)
=
√
ε2√
ε1
B12 (40)

is also independent ofm.
More generally in order for the Bethe-ansatz (27) to work we should have

B̃jl ≡ a(. . . , j, l, . . .)

a(. . . , l, j, . . .)
= −
√
εl√
εj

cosh(e
(sj )

j + ikl)

cosh(e(sl )l + ikj )
=
√
εl√
εj
Bjl (41)

for all permutations of adjacent elements ina(P ). Following the same steps as in [3] it can
be proved that equations (41) are enough to ensure the effectiveness of the ansatz (27) in the
case of triple coincidence of dislocations. In order to complete the solution we still need to
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fix the wavenumbers{k1, k2, . . . , kn}. As usual this is done by inserting (27) in the boundary
condition (25),∑

a(P1, . . . , Pn)φP1(m, 0)[φP2(m− 2, x2) . . . φPn(m− 2n + 2, xn)]

= z
1−(−1)κ

4
m+1

∑
a(P2, . . . , Pn, P1)[φP2(m− 2, x2) . . . φPn(m− 2n + 2, xn)]

×φP1(m− 2n,N) (42)

where in the right-hand side a circular shift onP was done. This equation is fulfilled if we
require that

a(P1, P2, . . . , Pn)φP1(m, 0) = z
1−(−1)κ

4
m+1 a(P2, P3, . . . , Pn, P1)φP1(m− 2n,N). (43)

Using (38), (36) and (41) we then obtain

exp(iNkj ) = −(−1)n−ρ(κ)m,j

n∏
l=1

Bjl j = 1, 2, . . . , n (44)

where

n− = int

[
1

2

∑
i

δεi ,−1

]
and ρ

(κ)
m,j =

(
�2
j,m

zm+1

)1−(−1)κ

4

. (45)

Actually, we have in (44) two distinct sets of equations, a first one form = 1 andm = 5 and
a second one form = 3 andm = 7. These sets must be solved simultaneously for the validity
of the Bethe-ansatz (27). From equations (14) and (33)–(37) we verify that those equations
degenerate (ρ(κ)m,j = 1,m = 1, 3, 5, 7; j = 1, 2, . . . , n) in the following cases: (a)κ = 0 or 2
for arbitrary values of temperaturest , (b)κ = 1 or 3 only at the critical temperaturet = tc = 1.
In both cases the Bethe-ansatz equations are given by

exp(−iNkj ) = −(−1)n−
√
ε

n∏
l=1

Bjl ε = ±1 (46)

withBj,l andn− given by (41) and (45), respectively. For a given value ofε = ±1, the prefactor
δ− = (−1)n− , in equation (46), may be positive or negative depending on the particular choice
of the set{ε1, . . . , εn}. If n is even these two choices are equivalent. The solution of both
equations are the same except that one of the quasimoments differs by the valueπ (mod 2π ).
However, ifn is odd the situation is different, and we should consider both equations. Their
solution gives us independent wavefunctions.

4. The operator content of the Baxter–Wu model and the SCP

In this section, by exploiting the conformal invariance at the critical point, we are going to
derive the operator content of the Baxter–Wu model and the SCP. The conformal anomaly
c and anomalous dimensions(x1, x2, . . .) are obtained in a standard way from the finite-size
behaviour of the eigenspectra of the associated transfer matrix, at the critical temperature. If
we write T = exp(−Ĥ ), then in a strip of widthL with periodic boundary conditions the
ground-state energy,E0(L), of Ĥ behaves for largeL as [17]

E0(L)

L
= ε∞ − πcvs

6L2
+ o(L−2) (47)

whereε∞ is the ground-state energy, per site, in the bulk limit. Moreover, for each operator
Oα with dimensionxα there exists a tower of states in the spectrum ofĤ with eigenenergies
given by [13, 18]

Eαm,m′(L) = E0 +
2πvs
L

(xα +m +m′) + o(L−1) (48)
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wherem,m′ = 0, 1, 2, . . . . The factorvs appearing in the last two equations is the sound
velocity and has unit value for isotropic square lattices. We can calculate directly the higher
eigenvalues of̂T BW(a,b) andT SCP(κ) of our model by a numerical diagonalization, using, for example,
the power method. However, since these matrices are not sparse and have dimension 2L, for a
horizontal widthL, we cannot compute the eigenspectra by numerical diagonalization methods
for L > L0 ∼ 18 in the case of the Baxter–Wu model.

Instead of a direct calculation we can explore the relation (13) among the Baxter–Wu
model and the SCP, and solve numerically the associated Bethe ansatz equations derived in
section 3. If we writeT = exp(−Ĥ ) for both models, the relation (13) implies

Tr(e−MH
BW
L ) = Tr(e−MH

SCP
N ) (49)

whereN = 2L
3 . It is important to observe that althoughHBW

L andHSCP
N have the same

dimension 2L they may have different eigenvalues. Indeed that is the case, specially if
t 6= tc = 1 as we can verify by a brute force diagonalization of these transfer matrices on
small lattices. In order to present our results let us rewrite the Bethe-ansatz equations (46)
in a convenient form. We are going to choose the prefactorδ− = (−1)n− = 1, since, as we
discussed in the last section, ifn is even all the energies can be obtained from a given choice
of δ−, and forn odd the energies obtained by different choices ofδ− are complex-conjugate
pairs. The eigenvaluesE

{sj }
n of HSCP

N in the sector withn dislocations are given by

E{si }n = −
N

4
ln(16t2(1 + t2))−

n∑
j=1

(e
(sj )

j − ik
(sj )

j )− 1

2
ln(ε) (50)

where

e
(sj )

j = 1
2 ln

(
xj + sj

√
x2
j − 1

)
xj = cos(2k

(sj )

j ) + t + 1/t (51)

with 1 = s1 = s2 = · · · = sn−l = −sn−l+1 = · · · = −sn, andl = 0, 1, . . . , n fixed. The
quasimomenta{k(sj )j } are obtained by solving the equations

exp(iNk
(sj )

j ) = (−)n+1√ε
n∏
p=1

(
cosh(e

(sj )

j + ik
(sp)
p )

cosh(e
(sp)
p + ik

(sj )

j )

)
j = 1, 2, . . . , n (52)

whereε = 1 (ε = −1) gives the even (odd) part of the eigenspectrum, with respect to theZ(2)
symmetry of the SCP discussed in the last section. Strictly speaking, these energies may only
give part of the eigenspectra, since the completeness of the Bethe-ansatz solution presented in
the last section is an open question. Numerically we have studied these equations extensively
for lattice sizes up toN ∼ 200 and part of our results att = tc = 1 were presented in [12].
For example, the ground-state energy forHSCP

N corresponding to the boundary conditions
κ = 0, 1, 2 and 3 given in (15) belongs to the sector wheren = N−κ, s1 = s2 = · · · = sn = 1
andε = 1. In table 1 we present these ground-state energies, per site, forκ = 0, 1 and 2
(κ = 3 is degenerate withκ = 1). The conformal anomaly is obtained by using (47). The
bulk energyεSCP∞ = − 3

4 ln 6 can be obtained from the exact solution in the bulk limit [3] and
the sound velocityvSCPs = √3/3, can be inferred from (48) and an overall analysis of the
dimensions appearing in the model. With these values the ground-state energy (first column in
table 1) gives us the estimatorsc(N) presented in table 2. As expected the conformal anomaly
is c = 1, as for the 4-state Potts model. The direct calculation of the eigenspectra ofHSCP

andHBW for small chains shows us that although the eigenspectra of both models is not the
same, several eigenvalues coincide. This is the case for the ground state. Consequently, by
using the bulk limit value [3]εBW∞ = − 1

2 ln 6, and the sound velocityvBWs = √3/2, we obtain
the expected valuec = 1 for the Baxter–Wu model.
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Table 1. Ground-state energies per site for the SCP with lattice sizeN and boundary conditions
κ = 0, 1 and 2 given by (15).

N κ = 0 κ = 1 κ = 2

6 −1.352 188 1950−1.339 618 1681−1.301 202 4788
10 −1.346 839 3066−1.342 307 4850−1.328 626 4987
50 −1.343 940 5169−1.343 759 1407−1.343 214 8801

100 −1.343 849 8316−1.343 804 4868−1.343 668 4443
150 −1.343 833 0374−1.343 812 8841−1.343 752 4226
200 −1.343 827 1593−1.343 815 8231−1.343 781 8139

Table 2. Conformal anomaly estimatorsc(N), as a function of the lattice sizeN , for the SCP and
Baxter–Wu model.

N c(N)

6 0.996 590 995
10 0.998 910 268
50 0.999 959 561

100 0.999 989 915
150 0.999 995 519
200 0.999 997 480

Table 3. Scaling dimensions estimatorsxεj (N − n, l), as a function of the lattice sizeN , for some
eigenenergies. These energies are thej th lowest energy obtained by solving (50)–(52) with values
n, ε andl.

N 6 10 50 100 150 200 Exact

x−1 (0, 0) 0.125 028 03 0.125 017 02 0.125 000 83 0.125 000 21 0.125 000 09 0.125 000 05 0.125
x−2 (1, 0) 0.248 967 41 0.249 597 71 0.249 983 23 0.249 995 80 0.249 998 13 0.249 998 95 0.25
x+

2 (0, 1) 0.506 262 26 0.502 153 17 0.500 084 06 0.500 020 99 0.500 009 33 0.500 005 25 0.5
x−1 (2, 0) 0.626 135 04 0.625 483 22 0.625 020 93 0.625 005 24 0.625 002 33 0.625 001 31 0.625
x+

4 (0, 1) 0.986 483 57 0.996 989 67 0.999 921 01 0.999 980 57 0.999 991 39 0.999 995 16 1.0
x+

1 (3, 0) 1.163 354 32 1.138 361 99 1.125 525 20 1.125 131 23 1.125 058 31 1.125 032 80 1.125
x−1 (3, 0) 1.270 592 13 1.258 877 95 1.250 385 05 1.250 096 49 1.250 042 90 1.250 024 13 1.25
x+

6 (0, 2) 1.535 024 76 1.512 316 34 1.500 487 24 1.500 121 77 1.500 054 11 1.500 030 44 1.5
x+

10(0, 1) 1.825 816 39 1.971 193 36 1.999 800 95 1.999 957 95 1.999 981 95 1.999 989 97 2.0

The dimensions defining the operator content of the model are obtained from the large-N
behaviour of the energies of excited states. Let us concentrate on the SCP. The Bethe-ansatz
equations (52) are the same for all boundary conditions, specified byκ (0, 1, 2 and 3) in (15):
only the allowed values ofn, given by (18), depend on the particular value ofκ. Using (48), the
finite-size sequences for some dimensions are shown in table 3. In this tablexεj (N − n, l) are
the estimators of the dimensions associated to thej th lowest eigenenergy in the eigensector
labelled byn andε. The values ofl used in (50)-(52) to obtain the corresponding energies
are also shown. The numerical solution of (50)–(52) was done by the Newton-type method.
The roots{kj } for all the solutions that we obtained are real. Although we cannot discard this
possibility for higher states, we do not find any string-type solution. The numerical solution of
(50)–(52) is not easy forN ∼ 200 due to numerical instabilities, and some tricks are necessary.
In most cases we solve initially these equations for small values oft , where a good guess can
be given, and use the solution obtained as the initial guess for a larger value oft . We repeat
this process up tot = tc = 1. As a result of our extensive calculation of the eigenspectra of
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HSCP we arrive at the following conjecture. Namely, the dimensions of primary operators in
a given sector labelled byn = N + κ + 4j (j = 0,±1,±2, . . .) of theHSCP with boundary
conditionκ (0, 1, 2 or 3) are given by

xp,q = 1

2

(
4p2 +

q2

4

)
p = j − κ

4
q = 0,±1,±2, . . . . (53)

In obtaining (53), the value ofE0 in (48) is the value of the ground-state energy for the periodic
(κ = 0) SCP. Moreover the number of descendants with dimensionsx(κ)p,q +m+m′ (m,m ∈ Z)
is given by the product of two independent Kac–Moody characters. This allows us, by using
(47) and (48), to write the generating functionZSCPN×M(κ) of the SCP with boundary condition
κ, up to order exp(−M/N) (M,N →∞) as

ZSCPN×M(κ) = exp(−eSCP∞ MN)z−1/1222(z)
∑

p∈(Z−κ/4)

∑
q∈Z

z
1
2 (4p

2+ 1
4q

2) (54)

where

z = exp

(
−2πN

M
vSCP

)
2(z) =

∏
n=0

(1− zn)−1. (55)

Since the Bethe-ansatz roots{kj }of (52) are real numbers, we can apply analytical methods [21–
24] based on the Wiener–Hopf method to obtain the finite-size corrections of the eigenenergies.
We calculate the finite-size corrections of the lowest eigenenergies in the sector withn

dislocations and parityε. Since these calculations are rather technical we present them in
the appendix for the interested reader. These analytical results are in agreement with the
conjecture (53), obtained from the numerical solutions of (50)–(52).

Let us return to the Baxter–Wu model. Consider initially the model with periodic boundary
conditions (a = b = 1 in (2)). Comparing the eigenspectra ofT̂ BW+,+ andT̂ SCP(0) , obtained by a
direct diagonalization on small lattices, we verify that many of the dimensionsx(0)p,q appearing
in (53) are absent. For example, the energies producing the estimatorx+

4 (0, 1) in the fifth row
of table 3 only appear inT SCP(0) . Following for large lattices the energies which are exactly
related in both models, we verified that the lower dimensions in the Baxter–Wu model, with
periodic boundary condition, are given byx = 0, 1

8,
1
2,

9
8, . . . , and appear with degeneracy

dx = 1, 3, 1, 9, . . . , respectively. Due to itsD(4) symmetry the Baxter–Wu model has the
same eigenspectra for the non-periodic boundary conditions given in (2), i.e.(a, b) 6= (+,+).
We have shown, at the end of section 3, that the partition function in these cases is exactly
related with a SCP with boundary conditions not included in (15). Actually, the application
of the Bethe-ansatz in this case, if possible, is more difficult since the number of colours in a
row is not a good quantum number any more. However, att = tc = 1 our direct calculations
of the eigenspectra on small chains shows that there exist exact coincidences between the
eigenvalues of̂T BW(−,−) and those of̂T SCP(κ) , which are given by the Bethe-ansatz equations (50)–
(52). These coincidences enable us to verify that the lower dimensions of the Baxter–Wu
model with boundary condition(a, b) 6= (+,+) in (2) are given byx = 1

8,
1
2,

10
16, . . . , and

appear with degeneracydx = 1, 1, 4, . . . . These are the same dimensions reported in [14]
for the 4-state Potts model with antiperiodic boundary condition. These results supplemented
with the global eigenspectrum calculated for small systems, indicate that the operator content
of the Baxter–Wu model is the same as that of the 4-state Potts model [14] and is given in
terms of aZ(2) orbifold [15] of the Gaussian model.

Before closing this section, since we have calculated the eigenspectra ofHBW and
HSCP for large lattices we can also calculate the dimensions of the operators responsible
for the corrections to finite-size scaling in both models. Since these calculations were already
presented earlier (see equations (11), (12) and table 3 in [12]), we only mention thatxγ = 4
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is the lowest dimension of the operator responsible for the finite-size deviations of the critical
behaviour. This means that relations (47) and (48) have corrections which are power-like with
the system sizeL. These corrections are like those of the Ising model and different from those
of the 4-state Potts model. This explains why the finite-size studies of the Baxter–Wu model
have good convergence, in contrast to the 4-state Potts model, where the operator responsible
for these corrections is marginal(xγ = 2) producing logarithmic behaviour with the system
size.

5. The off-critical properties of the Baxter–Wu model

The Baxter–Wu model and the SCP have a massive spectra att 6= tc = 1. A continuum field
theory describing the long-distance physics in this phase can be obtained in the neighborhood
of the perturbing thermal parameterδ = t − tc . 0. Such a field theory will be massive
and the masses can be estimated from the finite-size behaviour of the eigenspectra of
H = − ln T̂ . We can calculate the mass spectrum by applying the scheme proposed by
Sagdeev and Zamolodchikov [23] in the study of the Ising model under the influence of
magnetic perturbations. According to this scheme we should initially calculate the finite-size
corrections of the zero-momenta eigenenergiesEk(δ, L), k = 0, 1, 2, . . . , at the conformal
invariant critical pointδ = 0. From our analysis presented in the last section these corrections
are governed mainly by an irrelevant operator with dimensionxγ = 4 and have integer power-
law behaviour with the system sizeL. According to conformal invariance [18]Ek(δ, L) should
behave as

Ek(L) = e∞L +
2πvs
L

(
xk − c

12

)
+ ak,1L

−3 + ak,2L
−5 + · · · (56)

wherexk is the conformal dimension associated toEk andak,i (i = 1, 2, . . .) areL-independent
factors. According to the scheme of [23], if the perturbed operator which produces the massive
behaviour has dimensiony, we should calculate the eigenspectra in the asymptotic regime
δ→ 0,L→∞, with

X = δ 1
2−y L (57)

kept fixed. In this regime (56) is replaced by

Ek(δ, L) = e∞L + δ
1

2−y Fk(X) + ak,1δ
3

2−y Gk(X) + ak,2δ
5

2−y Hk(X) + · · · . (58)

The masses of the continuum field theory are obtained from the large-X behaviour of the
functions [23]Fk(X), and are given by

mk ∼ Fk(X)− F0(X) (59)

whereF0(X) is associated in (58) with the ground-state energy.
In the present application, the thermal fluctuations are produced by the energy operator,

which has dimensiony = xε = 1
2. Since we are going to calculate the eigenenergies of

the Baxter–Wu model by exploiting its connection with those of the SCP, it is important to
compare their eigenspectra for small lattice sizes. In table 4 we represent fort < tc (T > Tc)

the relative location in the eigenspectra of the lower zero-momentum energies of both models.
The eigenenergies in the same line are exactly degenerate on the finite lattice. In this table we
also show the parity quantum numberε ± 1, of the eigenenergies ofHSCP .

It is important to mention that although the Baxter–Wu model and the SCP are exactly
related, the parametert has quite a different effect in both models. In the case of the Baxter–
Wu model it drives the system from an ordered phase(T < Tc, t > tc = 1) to a disordered
phase(T > Tc, t < tc = 1). On the other hand, as we can see from (14), in the SCP
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Table 4. Energies for the Baxter–Wu model and SCP. The energies of the same line are identical.

BW SCP

ESCP7 (ε = 1)
EBW3 ESCP6 (ε = −1)

ESCP5 (ε = −1)
EBW2 ESCP4 (ε = 1)

ESCP3 (ε = 1)
EBW1 ESCP2 (ε = −1)

ESCP1 (ε = −1)
EBW0 ESCP0 (ε = 1)

Table 5. The mass-ratio estimatorsR2(X,L) defined in (60).

X m2/m1

2 1.4049
5 1.7169
6 1.7273
7 1.7303

it drives the model from an ordered phase rich in colours 4 and 8 (t > tc = 1) to another
ordered phase rich in colours 2 and 6(t < tc = 1). This fact implies that even forT > Tc
we should have in the SCP an infinite set of states, including the ground state, that degenerate
exponentially with the system size(En − E′n ∼ exp(−aL)), which certainly is not the case
for the Baxter–Wu model in its disordered phase. In table 4 the pair of levelsESCPi andESCPi+1
(i = 0, 2 and 4) degenerate exponentially. Baxter and Wu [3] in their original calculation of
the exponentα of the Baxter–Wu model used the excited energyESCP2 (ε = 1), instead of
ESCP3 (ε = −1) = EBW1 . However, as we mentioned, these energies become exponentially
degenerate with system size, not changing their exact resultα = 2

3.
Exploring the correspondences presented in table 4 and using (57)–(59) we can calculate

the mass ratios of the underlying massive field theory governing the Baxter–Wu model for
T 6= Tc. They are calculated from the asymptotic regimeX→∞ of the finite-size sequences

Rk(X,L) = Fk(X,L)− F0(X,L)

F1(X,L)− F0(X,L)
→ mk

m1
. (60)

The functionsFk(X,L) are obtained by using in (58) the finite-size sequences of the zero-
momentum states (k = 0, 1, 2 . . .). The exact degeneracy ofEBW1 (see table 4) implies the
first massm1 is triple generated. From the equalityEBW2 = ESCP4 we can calculate the second
massm2 by solving the Bethe-ansatz equations derived in section 3 for the SCP. Unfortunately,
although trying hard, we were not able to find the Bethe-ansatz roots that would correspond
to this energy. However, applying the Lanczos method directly inHSCP we calculate this
eigenenergy up toL = 21, in the Baxter–Wu model. In table 5 we show the estimators
R2(X,L) obtained by using in (58)–(60)L = 15, 18 and 21. These results are consistent with
the conjecturem2 =

√
3m1. In the case of massm3 our results are more precise since we

were able to calculateEBW3 = ESCP6 (ε = 1) for lattice sizes up toL = 150, by solving the
Bethe-ansatz equations (50)–(52). In table 6 we show the estimatorR3(X,L) for some values
of X, obtained by using in (58)–(60)L = 144, 147 andL = 150. These results show clearly
thatm3 = 2m1. The numerical analysis of other higher energies in the spectrum shows that a
continuum starts atm3.
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Table 6. The mass-ratio estimatorsR3(X,L) defined in (60).

X m3/m1

10 2.026 32
20 2.005 38
40 2.001 23
40 2.000 53

The mass ratios we obtained should be the same as those of the 4-state Potts model, since
we expect both models share the same universality class of critical behaviour. In fact they
coincide with the masses previously conjectured [24] for the 4-state Potts model and are also
given by the masses of a sine-Gordon model [25] at a special coupling, i.e.

mi+1 = m1 sin(
π

6
i) i = 1, 2, 3. (61)

To conclude this section we mention that we also studied the effect of magnetic
perturbations in the Baxter–Wu model. This was done by calculation of the eigenspectra
of T̂ BWL,M with the addition of an external magnetic fieldh. In this caseδ = h andy = 1

8 in
(58), and the masses we obtained are consistent with those reported in [26] for the 4-state Potts
model. However, our results in this case, specially for larger masses, lack precision because
we had to calculate directly the eigenspectrum ofT̂ BWL,M , since the equivalence with the SCP

presented in section 2 is not valid any more and unlikeT̂ SCPN,M this matrix is not sparse.

6. Conclusions and comments

The operator content of the Baxter–Wu model was calculated for several boundary conditions
by exploiting the conformal invariance of the infinite system at the critical point. Our results
are calculated analytically and numerically for very large lattice sizes. This was possible due to
the relation between the Baxter–Wu model and the SCP. Actually, we showed that the partition
functions of both models are exactly related for several boundary conditions (see section 2)
and we were able to extend the original Bethe-ansatz solution [3] for most of these boundaries
(see section 3).

The operator content of the SCP with several toroidal boundary conditions (see (53)–(55))
is the same as those of a Gaussian model with dimensions [27]

xn,m = gn2 +
m2

4g
(62)

where g = 1
8 is the compactification radius andn,m ∈ Z are the vorticity and spin-

wavenumber, respectively. However, only part of the eigenspectra of both models coincide.
Our analysis (section 4) shows that the dimensions of the Baxter–Wu model, for several
boundary conditions, are given by aZ(2) orbifold of the above Gaussian model. This operator
content coincides with the 4-state Potts model, indicating that indeed both models share the
same universality class of critical behaviour. It is interesting to remark that whereas for the
SCP the operator content is given in terms of characters of the Kac–Moody algebra, in the
Baxter–Wu model the characters are those of the Virasoro algebra.

On the other hand a similar exact relation as that between the SCP and the Baxter–Wu
model also exists between the 4-state Potts model and the 6-vertex model at its isotropic point
(γ = 0), or equivalently the quantumXXX chain (anisotropyγ = 0). The operator content of
this model is given by a combination of the dimensions given in (62) but withg = 1

2. In the 6-
vertex model, orXXZ chain, the point whereg = 1

8 corresponds to the anisotropyγ = 3π/4,
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and is the so-called Kosterliz-Thouless point. This implies that exactly at the critical point
(L→∞, T = Tc) the Baxter–Wu model and the 4-state Potts model are governed by the same
conformal theory, but deviations from the critical point, like for example the finiteness of the
lattice, will be governed by an effective Gaussian model with different compactification radius.
It is known [8] that in the case of the 6-vertex model orXXZ chain the finite-size corrections
are ruled mainly by the operator with dimensionx0,2 in (62) besides the descendant of identity
operator with dimension four. This implies the appearance of logarithmic corrections, with
the system size, atg = 1

2 sincex0,2 = 2 and the corresponding operator responsable for
such corrections is marginal. On the other hand atg = 1

8 we only have integer power-law
corrections with the system size, since in this case the operator with dimension four dominates
the finite-size correction. This explains why although the Baxter–Wu model and the 4-state
Potts model are given by the sameZ(2) orbifold of a Gaussian theory, they show quite different
behaviour at finite lattices.

In section 5 we calculated the mass spectrum of the underlying field theory governing the
Baxter–Wu model around its critical point. In the case of thermal perturbations we obtained
the masses given in (61) which are the same as those of the 4-state Potts model [24] and are
also the masses of a special point of a massive sine-Gordon field theory [25]. Finally, in the
case of magnetic perturbation our numerical results, although poorer, are consistent with the
same masses reported earlier for the 4-state Potts model [26].
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Appendix A. Analytic calculation of the leading finite-size corrections

In this appendix we calculate analytically the leading finite-size corrections for some of the
eigenenergies of the SCP at the critical pointt = tc = 1. We will calculate the finite-size
corrections of the lowest energiesEn(ε) of the Hamiltonian,HSCP = − ln T̂SCP , in the sector
with n dislocations andZ(2)-colour parityε (n = 0, 1, 2, . . .; ε = ±1). Since the associated
roots of the Bethe-ansatz equations are real numbers our analytical calculations are based
on the method pioneered by de Vega and Woynarovich [19] and Hamer [20] and refined by
Woynarovich and Eckle [21] (see also [22]). In order to apply this method it is convenient to
change the variables{k1, k2, . . . , kn} appearing in (46) into new variables{u1, u2, . . . , un} so
thatBj,l become a function of the differenceuj − ul . This was done by Baxter and Wu [3]
for arbitrary temperatures andBj,l(uj − ul) are now given in terms of elliptic functions. At
t = tc = 1 these elliptic functions become hyperbolic functions, with

Bj,l = −exp(−i2(uj − ul)) = −i tanh(ul − uj − iπ/4). (A.1)

In terms of the variablesu the quasimomentak(u) and the factorse(u) in (51) are given by

k(u) = i/2 ln

(
tanh(iπ/8 +u)

tanh(iπ/8− u)
)

(A.2)

e(u) = 1

2
ln

(
cosh(2u) +

√
2/2

cosh(2u)−√2/2

)
. (A.3)
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The Bethe-ansatz equations (46) or (52) can be written as

Ij

N
= 1

2π

{
k(uj ) +

1

N

n∑
l=1

2(uj − ul)
}

j = 1, 2, . . . n (A.4)

where 2Ij are integers or half-odd integers depending on the value ofε. The values ofIj for
the lowest eigenenergy in the sector, with given values ofn andε, which we are interested in
are

I1, I2, . . . , In = −n− 1− ε̃
2

,
n− 1− ε̃

2
+ 1, . . . ,

n− 1 + ε̃

2
ε̃ = 1− ε

4
. (A.5)

Following a standard procedure [19] we define the density of roots

σnN(u) =
dZnN
du

(A.6)

where

ZnN(u) =
1

2π

{
k(u) +

1

N

n∑
l=1

2(u− ul)
}
. (A.7)

WhenN →∞ (A.6) becomes an integral equation whose solution gives the bulk limit of the
density of roots. In particular, in the sectorn = N this density of roots is given by

σ∞(u) = 4

π

cosh(4u) cosh(8u/3)

cosh(8u) + 1
. (A.8)

In this limit the energy per site is given by [3]

eSCP∞ = − 3
4 ln(6). (A.9)

The difference between the energy per site and the density of roots and their bulk-limit values
can be expressed by

EnN

N
− eSCP∞ = −

∫ ∞
−∞

f (v)S(v) dv (A.10)

and

σnN(u)− σ∞(u) = −
1

2π

∫ ∞
−∞

p(u− v)S(v) dv (A.11)

respectively, where

S(v) = 1

N

n∑
j=1

δ(v − uj )− σnN(v) (A.12)

p(u) = −8
√

3

3

sinh(8u/3)

sinh(4u)
(A.13)

f (u) = 1

2

∫ ∞
−∞

sinh(πx/8)

x(cosh(πx/4)− 1
2)

exp(ixu) dx. (A.14)

Using the Euler–Maclaurin formula we can expand (A.10) and (A.11), obtaining

EnN

N
− eSCP∞ =

(∫ ∞
3+

f (v)σ nN(v) dv − 1

2N
f (3+)− 1

12N2

f ′(3+)

σ nN(3+)

)
+

(∫ ∞
3−

f (v)

2π
σnN(v) dv − 1

2N
f (3−)− 1

12N2

f ′(3−)
σ nN(3−)

)
(A.15)



2058 F C Alcaraz and J C Xavier

and

σnN(u)− σ∞(u) =
(∫ ∞

3+

p(u− v)
2π

σnN(v) dv − 1

2N
p(u−3+) +

1

12N2

p′(u−3+)

σ nN(3+)

)
+

(∫ ∞
3−

p(u + v)

2π
σnN(v) dv − 1

2N
p(u +3−)− 1

12N2

p′(u +3−)
σ nN(3−)

)
(A.16)

respectively. In the above equations3+ and3− are the largest and smallest root determined
by the condition∫ ∞

3±
σnN(u) du = 1

2N
(1 +β±(n)) (A.17)

where

β±(n) = N − n
2
∓ 1− ε

4
.

We should now consider separately the casesu > 3+ andu < −3−. In the case where
u > 3+ (u < −3−) the corrections of O(1/N2) are calculated by neglecting the terms in the
second (first), large bracket in (A.16). Defining

g(u) = p(u)/2π f ±(u) = σ∞(u +3±) χ±(u) = σnN(u +3±) (A.18)

we can write (A.16) as

χ±(t±)− f ±(t±) =
∫ ∞

0
g(t± − v)χ±(v) dv − 1

2N
g(t±) +

1

12N2

g′(t±)
σ nN(3±)

. (A.19)

This is precisely the standard form of the Wiener–Hopf equation (see, for example Morse and
Feshbach [16]). Its solution is obtained on defining the Fourier transforms

χ̃±± (w) =
∫ ∞
−∞

exp(iwt)χ±± (t) dt χ±± (t) =
{
χ±(t) t ≷ 0

0 t ≶ 0
(A.20)

and the corresponding Fourier pairsg ↔ g̃, f ↔ f̃ . Using the fact that

(1− g̃(w))−1 = G+(w)G−(w) (A.21)

where

G+(w) =
√

2π0( 1
2 − iw/4) exp(iw ln(2)/4)

0( 5
6 − iw/8)0( 1

6 − iw/8)
= G−(−w) (A.22)

we can express̃χ±± (w), after some algebraic manipulations as

χ̃±+ (w) = C±(w) +G+(w)(Q
±
+ + P±(w)) (A.23)

where

C±(w) = 1

2N
+

iw

12N2σnN(3±)
Q±+ (w) =

2

π

G+(i 4
3) exp(− 4

33±)
4
3 − iw

(A.24)

P±(w) = − 1

2N
+

i(g1− w)
12N2σnN(3±)

g1 = 109
6 . (A.25)

Equations (A.19) and the definitions (A.18) give us

Q±+ (0) =
3

2π
G+(i 4

3) exp(− 4
33±) =

1

2N
− ig1

12N2σnN(3±)
+

1

2N

β±
G+(0)

(A.26)

σnN(3±) =
g2

1/2− 4
3ig1

12N2σnN(3±)
+

ig1 + 4
3

2N
+

4
3β±(n)

2NG+(0)
. (A.27)
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Finally, using (A.23), (A.26) and (A.27) in (A.15) and approximatingf (|u|) =√
3 exp(− 4

3|u|), u� 1, we obtain the first-order correction for the lowest energyE
n,ε
N = E(n)N

in the sector withn dislocations and colour parityε,

EnN

N
− eSCP∞ = πvSCPs

6N2

(
−1

6
+ 2Xεr

)
+ o(1/N2) (A.28)

where

Xεn =
(N − n)2

8
+
(1− ε)2

16
. (A.29)

In particular, for the ground-state energyn = N , ε = 1, we have

E0
N

N
≡ E

N,+
N

N
= eSCP∞ − πv

SCP
s

6N2
+ o(1/N2) (A.30)

and comparing with (47) we obtain the valuec = 1 for the conformal anomaly. If we now
consider the gaps with respect to the ground-state with periodic boundary condition we obtain

E
N,ε
N

N
− E

0
N

N
= 2πvSCPs Xεn

N2
+ o(1/N2).

Comparing this expression with (48) we obtain the conformal dimensionsXεn. These values
are in perfect agreement with the operator content conjectured for the SCP and Baxter–Wu
model, presented in section 4.
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