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Abstract. The operator content of the Baxter-Wu model with general toroidal boundary
conditions is calculated analytically and numerically. These calculations were done by relating
the partition function of the model with the generating function of a site-colouring problem in a
hexagonal lattice. Extending the original Bethe-ansatz solution of the related colouring problem
we are able to calculate the eigenspectra of both models by solving the associated Bethe-ansatz
equations. We have also calculated, by exploring the conformal invariance at the critical point, the
mass ratios of the underlying massive theory governing the Baxter-Wu model in the vicinity of its
critical point.

1. Introduction

The Baxter-Wu model is the simplest non-trivial spin model with three-spin interactions. Its
Hamiltonian is defined on a triangular lattice by

H=-J Za,-ojok )
(ijk)

where the sum extends over the elementary trianglésthe coupling constant ard = +1
are Ising variables located at the sites. Historically this model was introduced by Wood and
Griffiths in 1972 [1], as an example of a model exhibiting an order—disorder phase transition
and not having a global up—down spin reversal symmetry. This model is self-dual [1, 2] with
the same critical temperature as that of the Ising model on a square lattice. In 1973 Baxter
and Wu [3] related the partition function of this model, in the thermodynamic limit, with the
generating function of a site colouring problem on a hexagonal lattice. Solving this colouring
problem through a generalized Bethe-ansatz they calculated the leading exponenis§3]
w= % andn = %1 of the Baxter—Wu model. The equality of these exponents with those of the
4-state Potts model [4-6] added to the fact that both models have the same fourfold degeneracy
of the ground state, induce the conjecture that they share the same universality class of critical
behaviour. This conjecture is interesting since, contrary to the Baxter—Wu model, the 4-state
Potts model is exactly integrable only at its critical point. However, from numerical studies
of these models on a finite lattice it is well known that both models show different corrections
to finite-size scaling (at the critical point). Whereas in the 4-state Potts models [7—10] these
corrections are governed by a marginal operator, producing logarithmic corrections with the
system size, which makes it enormously difficult to extract reliable results from finite-size
studies of the model, this is not the case in the Baxter—Wu model [11-13].

0305-4470/99/112041+20$19.50 © 1999 IOP Publishing Ltd 2041
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Nowadays with the developments of conformal invariance applied to critical phenomena
[13] the classification of different universality classes of critical behaviour becomes clear. Two
models belong to the same universality class only if they share the same operator content, not
only the leading critical exponents. The operator content of the 4-state Potts model was already
conjectured from finite-size studies in its Hamiltonian formulation [14] and can be obtained by a
Z (2) orbifold of the Gaussian model in a special compactification radius (see [15] for a review).
In this paper we numerically and analytically calculate the operator content of the Baxter—Wu
model with several boundary conditions. Part of our numerical calculation was announced in
[12]. In order to do this calculation we generalize the original Bethe-ansatz solution of the
related site-colouring problem with periodic boundary condition. This is necessary because
this solution only gives part of the eigenspectrum of the associated transfer matrix. We also
extend our Bethe-ansatz solution to other cases where the site-colouring problem is not on a
periodic lattice. This extension enables us to obtain the operator content of this model and the
Baxter—Wu model for more general toroidal boundary conditions. Our numerical study was
done by numerically solving the Bethe-ansatz equations and the analytical work was done by
studying these equations using standard techniques based on the Wiener—Hopf method [16].

We believe that after the Ising model the Baxter—-Wu model is the simplest spin model that
can be solved exactly for arbitrary temperatures. We explore this solution in order to obtain
the mass spectrum of the massive theory describing fluctuations near the critical point.

The layout of this paper is as follows. In section 2 we introduce a site-colouring problem
on a hexagonal lattice whose generating function is exactly related, in the bulk limit, with
the Baxter-Wu model. Our construction is valid for some toroidal boundary conditions,
generalizing the original construction [3] for periodic lattices. In section 3 we present the
transfer matrix associated to the colouring problem and calculate its eigenvalues by the Bethe-
ansatz. In section 4 the operator content of the Baxter—Wu model and the related site-colouring
problem is obtained. The mass spectrum of the massive field theory governing the thermal
and magnetic perturbations is calculated in section 5. Finally, our conclusions are present
in section 6 and the analytical calculation of some of the conformal dimensions of the site-
colouring problem is presented in the appendix.

2. The Baxter-Wu model and the related site-colouring problem

In this section we relate the Baxter—Wu model with general toroidal boundary conditions with
a site-colouring problem(SCP) on the hexagonal lattice. The construction presented here
generalizes those presented by Baxter and Wu [3] for the periodic case.

Let us consider a triangular lattice with (M) rows (columns) along the horizontal
(vertical) direction, respectively. For convenience we t@kas a multiple of three, and
decompose the lattice in three triangular sublattices formed by the points denatedland
A in figure 1. We attach at each site of a sublattice Ising varigble} {¢"} and{c2}, and
the Baxter—Wu model, with the Hamiltonian (1), is given in terms of the simplest three-body
interactions with one spin in each sublattice.

The model has a non-loc2l(2) x Z(2) symmetry corresponding to the global change of
variables in two of the sublattices, i.e.

o = ac® 0° — bo”® o — abo (a=b==1).

This fact implies that at sufficiently low temperatures the model have a fourfold degenerate
ground state. Creating, at low temperatures, domain walls connecting those different ground
states, we see that, in fact, the symmetry of those long-range excitatio® jas in the 4-state

Potts model. This reasoning suggests that critical fluctuations of both models are described in
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Figure 1. A triangular lattice withL = 3 rows andM = 6 columns. The Baxter—Wu model is
defined on the triangular lattice formed by the poi@ts(] and A, and the link variableg)} are
defined on the hexagonal lattice formed by the pdin@ndO. The site-colouring problem (SCP)
is defined on the hexagonal lattice formed by the painendO. The open symbol®, [LlandA
denote the bordering sites related through (2) with the bulk ones (full symbols).

terms of the same quantum field theory. In order to do a detailed study of several sectors of
this underlying field theory we consider the Baxter—Wu model with general toroidal boundary
conditions compatible with it€ (2) x Z(2) symmetry:

A A
=ao;, ;

o __ ) O _ O
o = bO’HLJ o = abaHLJ (2)

g ij

ij
wherea, b = +1. In figure 1 the symbols, [0 and A denote the bordering sites which are
related by (2) to the bulk ones (full symbols). Imposing a periodic boundary condition along

the vertical direction, the partition function of the modgi?,, can be written as
Zi = Tr(T(’j’% M 3

wheref({jvg’) is the associated row-to-row transfer matrix. Its elemesis. . ., oL|f(32’)|oi,

a

..., o, ) are given by the Boltzmann weights generated by the spin configurgtigns . , o}

and{oy, ..., o, } of adjacent rows and are given by
. L
(o1, ..., oN|T£’V,}V)|01/, ce Oy = eXp<K Za;oj»,z(ojﬂ + ajﬁfl)) 4)

j=1

with K = kBLT and on the right-hand side the appropriate boundary conditioh) is taken
into account.

Following Baxter and Wu [3], we can rela®?”, to the partition function or generating
function Z3¢%, of a SCP on a honeycomb lattice with = %L rows andM columns. In
order to do this, it is convenient to define link variabjg at the links of the hexagonal lattice
formed by the sublattices and (heavy lines in figure 1). These variables are given by the
product of the site variables at the ends of the link{ ¢~ °). In terms of these new variables

the Hamiltonian is given by

H:—JZUiA(A1+A2+-~-+A6) (5)

ieA
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where the summation is only over the sublattic@andiq, Ay, ..., Ag are the link variables
surrounding a given site variabdf,\A. Taking into account the boundary conditions (2), the
partition function, in terms of these new variables, can be written as

zP0 = [TlexpKo® (fira+ faha+ -+ fode)}3 (L +M1hz. .. o)} (6)

{o2,A} A
where the product extends over all the elementary hexagons formed by the sites in sublattices
O ando, and surrounding a site variabié'. The factor%(l +XA1)2...Ag) in (B) is necessary
since the variableg.} are notindependent. The factgii = 1, 2, ..., 6) in (6) are constants
defined on the links of the hexagonal latti€&+©) and depend on their relative location (see
figure 1). If both ends of a link (with corresponding variablg;) belongs to the bulk of the
lattice (@—m), f; = 1; if one of its ends is on the bordev{m or ®-L]), f; = ab; and if
both ends are on the border<{), f; = a. To proceed it is convenient [3] to rewrite the last
product in (6), surrounding each lattice siteas

FA+rha. k)= Y g, )02, u) ... g(he, 1) @)
pnh==+1
where
g, ) =270+ + |1 — pl). (8)

Substituting the expression (7) into equation (6) the partition function will be expressed in
terms of a single sublattic& with site variablego )} and{x*}, and link variablegx}. Taking
into account the boundary factors, it is straightforward to write

ZEhi= ) { > expK (0 +07)hi )8 (i g )8 (M uf)} ©)
{o2,ut} (i, j) L A j=%1
where(i, j) are links on the hexagonal lattice formed by the sublatficaado (see figure 1).
In order to derive (9) we are forced to restrict ourselves only to boundary conditions (2) where
a = b = £1. Fortunately this does not restrict our analysis since, due t®tdg symmetry
of the model, the eigenspectra of the transfer matrices with boundary condlitord and
a = b = —1 are degenerate. Summing ovy&} in (9) we obtain

8= " []wel uwiof. uh) (10)
{o2,un} (. J)
where
w(oi, ki; Oj, 1j) = 27 3[exp(K (o; + o))+ uip; exp(—K(o; +0;))]. (11)

Finally, following Baxter and Wu [3], we now associate the above partition function to
the generating function of a SCP with eight colours. We associate odd colours 1, 3,5 and 7 at
a given siteA according to the values of the variables®, 1) attached at the site:

(++) »> 1 (-+)—>3 (-—-)—5 +) —> 7. (12)

The relation (11) tell us that links connecting colours 3, 7 and 1, 5 should be forbidden in the
SCP. This constraint can be easily implemented [3] by introducing the even colours 2, 4, 6 and
8 on the sublattic®, forming with the sublatticé\ an hexagonal lattice witlv = %L (M)

sites in the horizontal (vertical) direction. The constraint is that all nearest-neighbour colours
on this hexagonal lattice must differ Byl (modulo 8). ForM — oo, the partition function

Zp", is then related to the generating functig}‘,;, given by

ZXN ="y =20, (13)
{C}
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where ny, no, ..., ng is the number of sites coloured with colour2l...,8 in a given
configurationC andé = (2sinh(4K))N/?2. The fugacities; (i = 1,2, ..., 8) are obtained
from (11)

nn=z3=zs=2z7=1

zz_l =7z4= zgl = zg = SiNh(2K) =t.
The critical point of the Baxter—-Wu model and of the SCP is given by the self-dual point
t = t. = 1[3]. Concerning the boundary conditions, the relations are as followsszff,a
with periodic boundary conditiotu = b = 1in (2)) is related withz3%;, also with periodic
lattice. The boundary conditiamn= b = —1 in (2) is related to a boundary condition in the
SCP such that if at sitél, j) we have a colour variable ; = 1, 3,5 or 7 at site(N + 1, j),
the colour variable should bg.1 ; = 3, 1, 7 and 5 respectively. We do not need to mention
even colours sincd is even (see figure 1).

(14)

3. The transfer matrix and the Bethe-ansatz of the SCP

In this section we derive the row-to-row transfer matrix of the SCP and generalize its Bethe-
ansatz solution presented by Baxter and Wu [3]. The solution presented in [3], as we shall see,
only gives part of the eigenspectra of the transfer matrix of the SCP, with periodic boundary
conditions. Here we extend the solutions for the periodic case and also derive the Bethe-ansatz
equations for the more general boundary condition

Ci,j =Cis+N,j t 2« (mOd 8 k=0,1,20r3 (15)

along the horizontal direction. The periodic case correspongds=td). Following [3], for a
given configuratioric; ;} of colours on the hexagonal lattice, we say we have a dislocation on
a given link of the lattice wherever the colour on the right end of the link is smaller (modulo
8) than that on the left end. In figure 2 we show two configurations with the corresponding
dislocations (dotted lines) for a lattice with widt = 4. In figure 26) the lattice is periodic
(« = 0) and in figure 2§) the boundary condition is given by (15) with= 1.

The generating function of the SCP can be written as

Z3h = Tr(I5ShHM (16)

where f(i)”’ is the associated row-to-row transfer matrix. This transfer matrix has
eIements({C}|f(f)CP|{C/}> given by the product of the Boltzmann weights due to the colour
configuration§C} = {c1, c2, ..., e} and{C’} = {c¢}, c5, ..., cjy} of two adjacent rows. If
the configuration produced B¢’} and{C’} contains only colours differing by 1 (modulo 8),
we have

N
UCNTETHCY) = & [ [z enzc)? (17)
i=1

with fugacitiesz; defined in (14). On the other hand, if the configuration does not satisfy this
constraint,({C}|f(f)CP {C'}) = 0. Itis simple to see that this requirementimplies, for arbitrary
values ofc in (15), the conservation of the numbeof dislocations along the vertical direction.
Consequently, the Hilbert space associatek can be separated into block-disjoint sectors
labelled by the values of. The possible values af depend on the boundary condition (15).

Fork =0, 2 (1, 3) they are even (odd), and are givembywhere
0<n;=N—-x—-4j<2N j=0,+1+2,.... (18)

The colour configurationg”} and{C’}, in a sector withz dislocations, can be conveniently
expressed by the setg; X) = (m;xq,x2,...,x,) and (m’; X') = (m'; x1, x5, ..., x},),
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() A

{m C}=(32234) 2°

Ol\)

{m,C}=(1,2,3,4,4) / ! / X

(b)

(m,C}=3222) 2°

{m,C}=(1,234) 1 2 3 2 3

Figure 2. Examples of configurations for the SCP with lattice skee= 4. The dislocations are
represented by dotted lines. la)(the configurationgm; X) = (1;2,3,4,4) and (m’; X') =
(3;2,2,3,4) are in the sectot = 4 («x = 0). In (b) the configurationsm; X) = (1; 2, 3,4) and
m'; X') = (3; 2, 2, 2) belong to the sector = 3 (k = 1).

respectively. The odd numbers and m’ give the colour at the first site and the sets

X = (x1,x2,...,x,) and X' = (x7, x5, ..., x,) give the position of the dislocations on
the row. The setX andX’ should satisfy
1<xi<x<---<x, <N 1<y <xp<--<x, <N (19)

and should have no more than one repeated valueafx’ if they are odd, or more than
three repeated values if they are even. In figua #( show the configuration@n; X) =
(1,2,3, 4,4 and(m’; X') = (3; 2, 2, 3, 4) which belong to the sector with= 4 and periodic
boundary condition. In figure B]f we show the configurationgn; X) = (1; 2, 3,4) and
m'; X'y = (3;2,2,2) belonging to the sector with = 3 in the lattice with boundary

conditionk = 1 in (15) and widthN = 4. Two configyrationsX = (x1, X2, ..., x,) and
X' = (x1, x5, ..., x,) are connected through the operal@)“’ if beyond (19)
{xé:xj—l ?f x; odd (20)
xj:xj,xj—l,xj—Z if x; even.

Inthe case; = x;+1 we have an additional constraitjt# x;,,. We should notice, for arbitrary
boundary condition, the identification

X = (0,x2,x3, ..., Xy) = (X2, X3, ..., X, N). (21)
The transfer matrix, in a given sector withdislocations is now given by

R 1ok N
(m, X|TES P im', Xy = 62,00 [Jwim+x;+x;=2))  wim) = Guzad™®  (22)
j=1

if X andX’ satisfy (19) and (20), and is zero otherwise. In the sector wifslocations the
eigenvectors) ™ of 7,557, with eigenvalueA can be written as

1-(=D¥

U =" 20" fulrn xa, o x) ms X) (23)
{m. X}
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where the summation is restricted to the configurations withdislocations, and

fn(x1, X2, ..., x,) are unknown amplitudes. The eigenvalue equatioﬁﬁfr” is given by
> (ﬂ w(m +xj +x} — 2j)>fm+2(X’) = Afu(X) (24)
X Nj=1

where the asterisk indicates thétand X’ satisfy the conditions (19) and (20). The relation
(21) implies that in (24) the amplitudes having = 0 should be replaced by the boundary
condition

1-(-D¥

Sn2(0, x5, x5, ..., %)) = 2,7 fm(xp, X5, ..., x,, N). (25)
Due to the values of the fugacities (14) it is simple to see f@gf’, besides conserving
the number of dislocations, also has an additidh@) symmetry (eigenvalues= +1), since
adding 4 (modulo 8) to all colours in a given configuration does not change its weight in the
generating function, that is

fm+4(X) = 6fm (X) (26)
Following Baxter and Wu [3] we assume the following Bethe-ansatz for the amplitudes:
Fu(X) =" a(P)pp,(m — 2. x1) ... ¢p, (m — 21, x,) (27)
P

where the summation is over all the permutationsP = {P;, P,, ..., P,} of integers
{1,2,...,n}. We require the existence afwavenumbers; (j = 1,2,...,n) and signs
€;(j =1,2,...,n)such that

B(m.x) = €1, (m + 4 x) = ajm eXpik;x) x odd (28)

jum, X) = €@ m T & X) = b eXplik;x) x even.

Observe that th& (2)-parity eigenvalue of the wavefunction is given by= ]_[’j’.:l €;, and it
is even or odd depending on the numbers of negative valugs dhe Bethe-ansatz solution
presented by Baxter and Wu [3] only gives the symmetric eigenvatues X), for periodic
boundary conditions{ = 0). We can follow the same procedure as in [3] in order to derive
the Bethe-ansatz equations. We have to consider various possible cholés détermine
the eigenvalue\.

First, let us consider the case where all dislocations are located at distinct positions, i.e.,
X1 # xp # - -+ # x,. Equation (24) is then replaced by

Zw(m+x+x’)¢j(m+2,x’)=kj¢j(m,x) j=1...,n (29)

where we have denoted
A=Eri... A, (30)

Actually, equation (29) represents two equations correspondingtid or even and can be
written as

Tjm+2Vime2 =A;Vim (31)

. _ 0 A om+1 o ajm
Timi2 = (“j.,m—l Ajm ) Vim = (b_,-,m (32)

o = wim)exp(—ik;) Ajm =w(m) +wim — 2) exp(—2ik;). (33)

where

with
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Using the fact that

ajm-2 —c: ajm+2
bjm—2 P\ bjme2
it is simple to see that; can be obtained from the eigenvalue equation

2
(Tj,m Tj,m+2) Vj,m+2 = )\jej Vj,m+2~

Solving for the eigenvalues af; ,, T; ,,+2» we see that ; does not depend on the valuemfas
it is expected) and satisfies

K — ;02 [exp(—idk;) + A exp(—2ik;) + 1] + exp(—4ik;) = 0 (34)

whereA =t + 1/¢t. The solution of (34) is given by; = \/e—jexp(eﬁsf) — ikf’)), with

e =3 (x; 552 =1)  x;=cos2k") + A (35)

ands; = +1. Equation (31) gives the relations
Ajme2 = €0 u—1bjm/j
bj,m+2 == \/e—ij,mbj,m (36)
Ajm = /€;0jm+12jmbjm/ N
where
Qjm = €5/ AT O — €502, /17 (37)

It is important to verify that; ,,+22;,, = 1, sothatat = ¢ =1, Qfm = 1.

Secondly, let us consider the case where two even dislocation positiomiacide. For
convenience suppose = x, = x (even). If we require that the ansatz (27) satisfies (24) with
eigenvalue given by (30) and (35) the equation

Z w(m +x +x; —2Qwm +x +x5 —4) frue2(xy, x5) = Ao fu(x,x)  (38)

must be fulfilled, where
Fmr2(x1, x2) = a(l, 2)p1(m, x1)po(m — 2, x2) + a(2, Do(m, x1)p1(m — 2, x2) (39)

and the asterisk in equation (38) indicates summation over the possible configurations
(x],x) = (x —2,x — 1), (x — 2,x), (x —1,x). Using (28), (32), (34) and (36) in (38)
we obtain, after some algebra (the same algebra as in [3]), that the ratio

5 _ a2 _ Jez coshel™ +ikp) Ve,

= = = 40
YT a2 T Jacoshel? +iky e 49
is also independent af.
More generally in order for the Bethe-ansatz (27) to work we should have
G
~ R A A coshe;”” +ik;)
B, =il ) Ve TSN T Ja (41)

- =—— = il
a(...,0, j,...) x/f_jCOSf(el(”)ij) JE J

for all permutations of adjacent elementiP). Following the same steps as in [3] it can
be proved that equations (41) are enough to ensure the effectiveness of the ansatz (27) in the
case of triple coincidence of dislocations. In order to complete the solution we still need to
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fix the wavenumbergky, ko, . . ., k,}. As usual this is done by inserting (27) in the boundary
condition (25),

> a(Pr, ... P)$pi(m, O)[¢p,(m — 2, x2) ... ¢p, (m — 20 + 2, x,)]
1-(=D¥
=201 D_a(Po, ..., Po, PD[p,(m —2,x5) ... pp, (m — 20+ 2, x,)]
X¢P1(m—2}’l,N) (42)
where in the right-hand side a circular shift #énwas done. This equation is fulfilled if we
require that

1-(—D¥

a(P, Pa, ..., P)op(m,0) =z,,7 a(Pa, Ps3,..., P, P)¢pp,(m — 2n, N). (43)
Using (38), (36) and (41) we then obtain

expiNk;) = —(=D" pi. [ [ B i=12....n (44)
=1

where

1-(=D¥

1 © Q? i
i K) Jj.m
n_= mt[é Ei 56,.,_1} and P = (—) . (45)

Im+1

Actually, we have in (44) two distinct sets of equations, a first onesfet 1 andm = 5 and

a second one for = 3 andm = 7. These sets must be solved simultaneously for the validity

of the Bethe-ansatz (27). From equations (14) and (33)—(37) we verify that those equations
degeneratep(ﬁ:)j =1,m=13,57;j=12,...,n)inthe following cases: (& = 0 or 2

for arbitrary values of temperaturegb)« = 1 or 3 only at the critical temperature= 7. = 1.

In both cases the Bethe-ansatz equations are given by
exp(—iNk;) = —(=D)" Ve[ [ By € =41 (46)
=1

with B; ; andn_ given by (41) and (45), respectively. For a given value ef =1, the prefactor

3_ = (=1)"-, in equation (46), may be positive or negative depending on the particular choice
of the set{ey, ..., €,}. If nis even these two choices are equivalent. The solution of both
equations are the same except that one of the quasimoments differs by the yalad 2r).
However, ifn is odd the situation is different, and we should consider both equations. Their
solution gives us independent wavefunctions.

4. The operator content of the Baxter—Wu model and the SCP

In this section, by exploiting the conformal invariance at the critical point, we are going to
derive the operator content of the Baxter-Wu model and the SCP. The conformal anomaly
¢ and anomalous dimensions, x», . ..) are obtained in a standard way from the finite-size
behaviour of the eigenspectra of the associated transfer matrix, at the critical temperature. If
we write T = exp(—H), then in a strip of widthZ with periodic boundary conditions the
ground-state energy,o(L), of H behaves for largé. as [17]

Eo(L) T CVs
L 7 6L2
wheree,, is the ground-state energy, per site, in the bulk limit. Moreover, for each operator
0, Wwith dimensionx, there exists a tower of states in the spectruni/ofiith eigenenergies
given by [13, 18]

+0(L7?) (47)

27 v

Ep (L) = Eo+ (xg +m+m') +0o(L™h) (48)
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wherem,m’ = 0,1,2,.... The factorv, appearing in the last two equations is the sound
velocity and has unit value for isotropic square lattices. We can calculate directly the higher
eigenvalues of(f_% and7;$'" of our model by a numerical diagonalization, using, for example,
the power method. However, since these matrices are not sparse and have dimferfsioa 2
horizontal widthZ, we cannot compute the eigenspectra by numerical diagonalization methods
for L > Lo ~ 18 in the case of the Baxter—Wu model.

Instead of a direct calculation we can explore the relation (13) among the Baxter—Wu
model and the SCP, and solve numerically the associated Bethe ansatz equations derived in

section 3. If we writel' = exp(— H) for both models, the relation (13) implies
Tre MUy = Tr(e ™A (49)

whereN = 2. It is important to observe that althougt?" and H{” have the same
dimension 2 they may have different eigenvalues. Indeed that is the case, specially if
t # t. = 1 as we can verify by a brute force diagonalization of these transfer matrices on
small lattices. In order to present our results let us rewrite the Bethe-ansatz equations (46)
in a convenient form. We are going to choose the prefattos (—1)"- = 1, since, as we
discussed in the last sectionyifis even all the energies can be obtained from a given choice
of §_, and forn odd the energies obtained by different choices ofire complex-conjugate

pairs. The eigenvalueg’’ of HyC* in the sector with: dislocations are given by

_ N 26y (s 1
EV) = =7 In(6°(1+1%) ;(65') — k") — 5n) (50)
j=
where
¢ = 1in (x, ;. /32— 1) xj = cos2k) 1 +1/1 (51)
Withl=s1=s)=: =8, = —S_j+1 = -~ = —s,,andl = 0,1, ...,n fixed. The
quasimomentak;‘”)} are obtained by solving the equations
G ip Gsp)
(s n_(coshe;’ +ik,"")
expliNk;") = (—)"1/e [] o i=12....n (52)
' p=1 \Coshe,"”" +ik;"")

wheree = 1 (¢ = —1) gives the even (odd) part of the eigenspectrum, with respect i(&2)e
symmetry of the SCP discussed in the last section. Strictly speaking, these energies may only
give part of the eigenspectra, since the completeness of the Bethe-ansatz solution presented in
the last section is an open question. Numerically we have studied these equations extensively
for lattice sizes up tav ~ 200 and part of our results at= . = 1 were presented in [12].

For example, the ground-state energy f8{¢” corresponding to the boundary conditions

k = 0,1, 2and 3 givenin (15) belongsto the sectorwheee N —k,s1 =so =--- =5, =1

ande = 1. In table 1 we present these ground-state energies, per site,£00, 1 and 2

(k = 3 is degenerate witkh = 1). The conformal anomaly is obtained by using (47). The
bulk energye5¢” = —32 In6 can be obtained from the exact solution in the bulk limit [3] and

the sound velocity¢” = V/3/3, can be inferred from (48) and an overall analysis of the
dimensions appearing in the model. With these values the ground-state energy (first column in
table 1) gives us the estimatar§V) presented in table 2. As expected the conformal anomaly

is ¢ = 1, as for the 4-state Potts model. The direct calculation of the eigenspedi$f 6f

and H2Y for small chains shows us that although the eigenspectra of both models is not the
same, several eigenvalues coincide. This is the case for the ground state. Consequently, by
using the bulk limit value [3¢2" = —11In 6, and the sound velocity?" = +/3/2, we obtain

the expected value = 1 for the Baxter—Wu model.
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Table 1. Ground-state energies per site for the SCP with lattice Sizend boundary conditions
« = 0,1and 2 given by (15).

N k=0 k=1 k=2

6 —1.3521881950—-1.3396181681—-1.3012024788
10 —1.3468393066—1.342307 4850—1.328 626 4987
50 —1.3439405169—-1.3437591407—-1.3432148801

100 —1.3438498316—-1.3438044868—-1.343668 4443
150 —1.3438330374—-1.3438128841—-1.3437524226
200 —1.3438271593-1.3438158231-1.3437818139

Table 2. Conformal anomaly estimatotgN), as a function of the lattice sizé, for the SCP and
Baxter—Wu model.

N c(N)

6 0.996590995
10 0.998910268
50 0.999959561

100 0.999989915
150 0.999995519
200 0.999997 480

Table 3. Scaling dimensions estimator§$(N — n, [), as a function of the lattice siz€, for some
eigenenergies. These energies arejthdowest energy obtained by solving (50)—(52) with values
n, € and/.

N 6 10 50 100 150 200 Exact

x; (0,00 0.12502803 0.12501702 0.12500083 0.12500021 0.12500009 0.12500005 0.125
x;(1,0) 0.24896741 0.24959771 0.24998323 0.24999580 0.24999813 0.24999895 0.25
x3(0,1) 050626226 0.50215317 0.50008406 0.50002099 0.50000933 0.50000525 0.5
x; (2,00 0.62613504 0.62548322 0.62502093 0.62500524 0.62500233 0.62500131 0.625
x;(0,1) 0.98648357 0.99698967 0.99992101 0.99998057 0.99999139 0.99999516 1.0
x7(3,00 116335432 1.13836199 1.12552520 1.12513123 1.12505831 1.12503280 1.125
x; (3,00 1.27059213 1.25887795 1.25038505 1.25009649 1.25004290 1.25002413 1.25
xg(0,2) 153502476 1.51231634 150048724 150012177 1.50005411 150003044 1.5
x5(0,1) 1.82581639 1.97119336 1.99980095 1.99995795 1.99998195 1.99998997 2.0

The dimensions defining the operator content of the model are obtained from the large-N
behaviour of the energies of excited states. Let us concentrate on the SCP. The Bethe-ansatz
equations (52) are the same for all boundary conditions, specified®yl, 2 and 3) in (15):
only the allowed values of, given by (18), depend on the particular value ofJsing (48), the
finite-size sequences for some dimensions are shown in table 3. In thisjeMe n,l) are
the estimators of the dimensions associated tgjthdowest eigenenergy in the eigensector
labelled byn ande. The values of used in (50)-(52) to obtain the corresponding energies
are also shown. The numerical solution of (50)—(52) was done by the Newton-type method.
The roots{k;} for all the solutions that we obtained are real. Although we cannot discard this
possibility for higher states, we do not find any string-type solution. The numerical solution of
(50)—(52) is not easy fav ~ 200 due to numerical instabilities, and some tricks are necessatry.
In most cases we solve initially these equations for small valuesvdiiere a good guess can
be given, and use the solution obtained as the initial guess for a larger valu§\efrepeat
this process up to = 7. = 1. As a result of our extensive calculation of the eigenspectra of
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H3CP we arrive at the following conjecture. Namely, the dimensions of primary operators in
a given sector labelled by = N +« +4j (j = 0, £1, 2, ...) of the H5¢” with boundary
conditionx (0, 1, 2 or 3) are given by

1 2
xl,,q=§<4p2+%> p:j—éf1 qg=0,4+1,42 .... (53)

In obtaining (53), the value dfy in (48) is the value of the ground-state energy for the periodic
(x = 0) SCP. Moreover the number of descendants with dimensighs m +m' (m, m € Z)

is given by the product of two independent Kac—Moody characters. This allows us, by using
(47) and (48), to write the generating functidnS’, («) of the SCP with boundary condition

K, up to order exp-M/N) (M, N — o0) as

Z35h () = exp(—eSSP MN)Z V202 (r) Y T patrtiad (54)
pe(Z—«k/8) qeZ

where
2t N ny—1
7= exp<—7vscp> O(z) = g(l -z (55)

Since the Bethe-ansatz rodts} of (52) are real numbers, we can apply analytical methods [21—
24] based on the Wiener—Hopf method to obtain the finite-size corrections of the eigenenergies.
We calculate the finite-size corrections of the lowest eigenenergies in the sector with
dislocations and parity. Since these calculations are rather technical we present them in
the appendix for the interested reader. These analytical results are in agreement with the
conjecture (53), obtained from the numerical solutions of (50)—(52).

Letusreturnto the Baxter—Wu model. Consider initially the model with periodic boundary
conditions ¢§ = b = 1in (2)). Comparing the eigenspectrafiﬁ+ and T(g)cp obtained by a
direct diagonalization on small lattices, we verify that many of the dmenmﬁipappearing
in (53) are absent. For example, the energies producing the estimjafod) in the fifth row
of table 3 only appear itT(g)CP . Following for large lattices the energies which are exactly
related in both models, we verified that the lower dimensions in the Baxter-Wu model, with
periodic boundary condition, are given by= 0, g, ; g, ..., and appear with degeneracy
d, =1,3,1,9,..., respectively. Due to it (4) symmetry the Baxter—Wu model has the
same eigenspectra for the non-periodic boundary conditions given in (2,it8.# (+, +).
We have shown, at the end of section 3, that the partition function in these cases is exactly
related with a SCP with boundary conditions not included in (15). Actually, the application
of the Bethe-ansatz in this case, if possible, is more difficult since the number of colours in a
row is not a good quantum number any more. However,-at. = 1 our direct calculations
of the eigenspectra on small chains shows that there exist exact coincidences between the
eigenvalues oTBW> and those oTSCP which are given by the Bethe-ansatz equations (50)—
(52). These coincidences enable us to verify that the lower dimensions of the Baxter—Wu
model with boundary conditiota, b) # (+, +) in (2) are given byx = £, 1,12 .. and
appear with degenerael = 1,1,4,.... These are the same dimensions reported in [14]
for the 4-state Potts model with antiperiodic boundary condition. These results supplemented
with the global eigenspectrum calculated for small systems, indicate that the operator content
of the Baxter—-Wu model is the same as that of the 4-state Potts model [14] and is given in
terms of aZ (2) orbifold [15] of the Gaussian model.

Before closing this section, since we have calculated the eigenspecti bfand
HSCP for large lattices we can also calculate the dimensions of the operators responsible
for the corrections to finite-size scaling in both models. Since these calculations were already
presented earlier (see equations (11), (12) and table 3 in [12]), we only mentior) thas
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is the lowest dimension of the operator responsible for the finite-size deviations of the critical
behaviour. This means that relations (47) and (48) have corrections which are power-like with
the system sizé&. These corrections are like those of the Ising model and different from those

of the 4-state Potts model. This explains why the finite-size studies of the Baxter—Wu model
have good convergence, in contrast to the 4-state Potts model, where the operator responsible
for these corrections is margingl, = 2) producing logarithmic behaviour with the system

size.

5. The off-critical properties of the Baxter—Wu model

The Baxter—Wu model and the SCP have a massive specteg at= 1. A continuum field

theory describing the long-distance physics in this phase can be obtained in the neighborhood
of the perturbing thermal parametér= ¢+ — t. < 0. Such a field theory will be massive

and the masses can be estimated from the finite-size behaviour of the eigenspectra of
H = —InT. We can calculate the mass spectrum by applying the scheme proposed by
Sagdeev and Zamolodchikov [23] in the study of the Ising model under the influence of
magnetic perturbations. According to this scheme we should initially calculate the finite-size
corrections of the zero-momenta eigenenerdie®, L), k = 0,1, 2, ..., at the conformal
invariant critical poin = 0. From our analysis presented in the last section these corrections
are governed mainly by an irrelevant operator with dimensijos- 4 and have integer power-

law behaviour with the system size According to conformal invariance [1&]; (8, L) should

behave as

27 v c _ _
Ey(L) =exxL + I - (xk - 1—2> +ap L3 L0+ (56)

wherex; is the conformal dimension associated}oanda, ; (i = 1, 2, ...) areL-independent
factors. According to the scheme of [23], if the perturbed operator which produces the massive
behaviour has dimension we should calculate the eigenspectra in the asymptotic regime

§ = 0,L — oo, with

X =671 (57)
kept fixed. In this regime (56) is replaced by
Ex(3. L) = esoL + 875 Fi(X) + 1877 Gi(X) + g 2877 Hy(X) +---.  (58)

The masses of the continuum field theory are obtained from the Mrgehaviour of the
functions [23]F,(X), and are given by

my ~ Fi(X) — Fo(X) (59)

whereFy(X) is associated in (58) with the ground-state energy.

In the present application, the thermal fluctuations are produced by the energy operator,
which has dimensioy = x, = % Since we are going to calculate the eigenenergies of
the Baxter—Wu model by exploiting its connection with those of the SCP, it is important to
compare their eigenspectra for small lattice sizes. In table 4 we represent for(T > T,)
the relative location in the eigenspectra of the lower zero-momentum energies of both models.
The eigenenergies in the same line are exactly degenerate on the finite lattice. In this table we
also show the parity quantum numket- 1, of the eigenenergies &f5¢7.

It is important to mention that although the Baxter—-Wu model and the SCP are exactly
related, the parameteihas quite a different effect in both models. In the case of the Baxter—
Wu model it drives the system from an ordered ph@se< 7., t > t. = 1) to a disordered
phase(T > T., t+ < t. = 1). On the other hand, as we can see from (14), in the SCP
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Table 4. Energies for the Baxter—-Wu model and SCP. The energies of the same line are identical.

BW  SCP
ESCP(e=1)
ESV  EIP(e=-1)
ESCP (e = -1)
ESV  EJP(e=1)
ESCP(e=1)
EEV  ESP(e=-1)
ESCP (e = —1)

EEY  ESP(e=1

Table 5. The mass-ratio estimatoRp (X, L) defined in (60).
ma/m1

1.4049
1.7169
1.7273
1.7303

NN &

it drives the model from an ordered phase rich in colours 4 and=8 (. = 1) to another
ordered phase rich in colours 2 ands6< r. = 1). This fact implies that even fdf > T,
we should have in the SCP an infinite set of states, including the ground state, that degenerate
exponentially with the system siZé&, — E, ~ exp(—aL)), which certainly is not the case
for the Baxter-Wu model in its disordered phase. In table 4 the pair of I&f&18 and £5G”
(i = 0, 2 and 4) degenerate exponentially. Baxter and Wu [3] in their original calculation of
the exponentr of the Baxter-Wu model used the excited enefgf (e = 1), instead of
E3°P(e = —1) = EBY. However, as we mentioned, these energies become exponentially
degenerate with system size, not changing their exact r@sul%.

Exploring the correspondences presented in table 4 and using (57)—(59) we can calculate
the mass ratios of the underlying massive field theory governing the Baxter—Wu model for
T # T,.. They are calculated from the asymptotic regikhe> oo of the finite-size sequences

Fr(X,L) — Fo(X, L)  my

Ri(X, L) = - M
Fi(X,L) — Fo(X, L) my

(60)

The functionsFy (X, L) are obtained by using in (58) the finite-size sequences of the zero-
momentum statesk(= 0, 1,2...). The exact degeneracy @&fF" (see table 4) implies the

first massn; is triple generated. From the equalif§" = EJ" we can calculate the second
massn, by solving the Bethe-ansatz equations derived in section 3 for the SCP. Unfortunately,
although trying hard, we were not able to find the Bethe-ansatz roots that would correspond
to this energy. However, applying the Lanczos method directli##7” we calculate this
eigenenergy up td. = 21, in the Baxter—Wu model. In table 5 we show the estimators
Ry(X, L) obtained by using in (58)—(6d) = 15, 18 and 21. These results are consistent with
the conjecturen, = V/3my. In the case of mases our results are more precise since we
were able to calculat€?" = ES“P (e = 1) for lattice sizes up td. = 150, by solving the
Bethe-ansatz equations (50)—(52). In table 6 we show the estiRat&t L) for some values

of X, obtained by using in (58)—(6Q) = 144, 147 andL = 150. These results show clearly
thatms = 2m,. The numerical analysis of other higher energies in the spectrum shows that a
continuum starts atz3.
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Table 6. The mass-ratio estimatorg (X, L) defined in (60).

X  mg/my

10 2.02632
20 2.00538
40 2.00123

40 2.00053

The mass ratios we obtained should be the same as those of the 4-state Potts model, since
we expect both models share the same universality class of critical behaviour. In fact they
coincide with the masses previously conjectured [24] for the 4-state Potts model and are also
given by the masses of a sine-Gordon model [25] at a special coupling, i.e.

Mivy = mlsin(%i) i=123 (61)

To conclude this section we mention that we also studied the effect of magnetic
perturbations in the Baxter-Wu model. This was done by calculation of the eigenspectra
of fLB’Z with the addition of an external magnetic field In this cased = h andy = % in
(58), and the masses we obtained are consistent with those reported in [26] for the 4-state Potts
model. However, our results in this case, specially for larger masses, lack precision because
we had to calculate directly the eigenspectrunfﬁf;&, since the equivalence with the SCP

presented in section 2 is not valid any more and urifik?ﬁf this matrix is not sparse.

6. Conclusions and comments

The operator content of the Baxter—Wu model was calculated for several boundary conditions
by exploiting the conformal invariance of the infinite system at the critical point. Our results
are calculated analytically and numerically for very large lattice sizes. This was possible due to
the relation between the Baxter—Wu model and the SCP. Actually, we showed that the partition
functions of both models are exactly related for several boundary conditions (see section 2)
and we were able to extend the original Bethe-ansatz solution [3] for most of these boundaries
(see section 3).

The operator content of the SCP with several toroidal boundary conditions (see (53)—(55))

is the same as those of a Gaussian model with dimensions [27]

m2

Xn,m = gnZ +— (62)
4g

whereg = % is the compactification radius andm € Z are the vorticity and spin-
wavenumber, respectively. However, only part of the eigenspectra of both models coincide.
Our analysis (section 4) shows that the dimensions of the Baxter—-Wu model, for several
boundary conditions, are given by&?2) orbifold of the above Gaussian model. This operator
content coincides with the 4-state Potts model, indicating that indeed both models share the
same universality class of critical behaviour. It is interesting to remark that whereas for the
SCP the operator content is given in terms of characters of the Kac—Moody algebra, in the
Baxter—Wu model the characters are those of the Virasoro algebra.

On the other hand a similar exact relation as that between the SCP and the Baxter—Wu
model also exists between the 4-state Potts model and the 6-vertex model at its isotropic point
(y = 0), or equivalently the quantuxiX X chain (anisotropy = 0). The operator content of
this model is given by a combination of the dimensions given in (62) butgv&h%. In the 6-

vertex model, oX X Z chain, the point wherg = % corresponds to the anisotropy= 3r /4,
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and is the so-called Kosterliz-Thouless point. This implies that exactly at the critical point
(L — o0, T = T.) the Baxter—Wu model and the 4-state Potts model are governed by the same
conformal theory, but deviations from the critical point, like for example the finiteness of the
lattice, will be governed by an effective Gaussian model with different compactification radius.
It is known [8] that in the case of the 6-vertex modeloX Z chain the finite-size corrections

are ruled mainly by the operator with dimensiayy in (62) besides the descendant of identity
operator with dimension four. This implies the appearance of logarithmic corrections, with
the system size, at = % sincexp, = 2 and the corresponding operator responsable for
such corrections is marginal. On the other hang at g we only have integer power-law
corrections with the system size, since in this case the operator with dimension four dominates
the finite-size correction. This explains why although the Baxter-Wu model and the 4-state
Potts model are given by the sai€?) orbifold of a Gaussian theory, they show quite different
behaviour at finite lattices.

In section 5 we calculated the mass spectrum of the underlying field theory governing the
Baxter—Wu model around its critical point. In the case of thermal perturbations we obtained
the masses given in (61) which are the same as those of the 4-state Potts model [24] and are
also the masses of a special point of a massive sine-Gordon field theory [25]. Finally, in the
case of magnetic perturbation our numerical results, although poorer, are consistent with the
same masses reported earlier for the 4-state Potts model [26].
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Appendix A. Analytic calculation of the leading finite-size corrections

In this appendix we calculate analytically the leading finite-size corrections for some of the
eigenenergies of the SCP at the critical paint 1. = 1. We will calculate the finite-size
corrections of the lowest energi€s (¢) of the Hamiltonian H5€” = — In Ts¢p, in the sector

with n dislocations and (2)-colour paritye (n =0, 1, 2, ...; ¢ = £1). Since the associated
roots of the Bethe-ansatz equations are real numbers our analytical calculations are based
on the method pioneered by de Vega and Woynarovich [19] and Hamer [20] and refined by
Woynarovich and Eckle [21] (see also [22]). In order to apply this method it is convenient to
change the variabldg, &, . .., k,} appearing in (46) into new variablés;, u,, ..., u,} SO

that B;; become a function of the differeneg — u;. This was done by Baxter and Wu [3]

for arbitrary temperatures arl; ; (u; — u;) are now given in terms of elliptic functions. At

t = t. = 1 these elliptic functions become hyperbolic functions, with

Bj; =—exp(—i®Ow; —uy)) = —itanh(u; —u; —in/4). (A1)

In terms of the variables the quasimomenta(x) and the factorg () in (51) are given by

. tanh(iz /8 +u)
1 cosh2u) ++/2/2
e =3 In (cosl‘(Zu) - ﬁ/Z) ' (A-3)
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The Bethe-ansatz equations (46) or (52) can be written as

I; 1 1 .
NZE{k(uj)+N;®(uj—u,)} j=12...n (A.4)
where Z; are integers or half-odd integers depending on the value ®he values of ; for
the lowest eigenenergy in the sector, with given values afide, which we are interested in
are

b ... I, =—" ; € ; 6+1,...,$ 52146 (A.5)
Following a standard procedure [19] we define the density of roots
o) = ddzu X (A.6)
where
Zy(u) = i{k(u)+£i@(u—ul)}. (A.7)
2 N ~

WhenN — oo (A.6) becomes an integral equation whose solution gives the bulk limit of the

density of roots. In particular, in the secioe= N this density of roots is given by
_ 4 cosh4u) cosh8u/3)
Toolt) = 7 cosh8u)+1 (A-8)

In this limit the energy per site is given by [3]
e3P = —-2Inb). (A.9)

The difference between the energy per site and the density of roots and their bulk-limit values
can be expressed by

EW% —el =— / " F S d (A.10)
and
1 o0
oy W) — oe(u) = _Z/ pu—v)S(v)dv (A.12)
respectively, where
1 n
Sw) =+ D 8w —uj) —op) (A.12)
j=1
8v/3 sinh(8u /3
P =5 iy (A.13)
1 /> sinh(rx/8) .
== dx. A.14
S (u) > /;Oo (Costirx/d) — %) exp(ixu) dx ( )

Using the Euler—Maclaurin formula we can expand (A.10) and (A.11), obtaining

EX/ _scprp _ o0 \ _i B 1 f’(A.;.)
N _< NEAAL dv=on /A = o0 ax(m))
*f) , 1 1 f(AL)

+</A o OR@ = o f(AL) = s o,’f,(A)) (A.15)
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and

,, “puw 1 pu—to
on(u) — oso(u) = (/{; TUN(U) dv — WP(M — A+ WW>

o0 /
plu+v) 1 1 plu+tA)
+ v)dv — —pu+A_)— —_— A.16
(/ on N Pt ) o o A (A.16)
respectively. In the above equations and A _ are the largest and smallest root determined
by the condition

* n 1
fA R0 G = 5o L+ () (A.17)

where

,3()—N_n 1—¢
+(n) = 2 + 4

We should now consider separately the cases A, andu < —A_. In the case where
u > A+ (u < —A_) the corrections of Q/N?) are calculated by neglecting the terms in the
second (first), large bracket in (A.16). Defining

gu) = p(u)/2x FEU) = os(u+Ay) XTW) = o+ Ay) (A.18)
we can write (A.16) as

XTE) — ) = / Oog(ri —v)x ) dv — ig(ri) NI G (A.19)
0 2N 12N2 o} (Ay) '

This is precisely the standard form of the Wiener—Hopf equation (see, for example Morse and
Feshbach [16]). Its solution is obtained on defining the Fourier transforms
@ 120

XE(w) = /m expiwt) x I () dt Xi@) = {o (<0 (A.20)

and the corresponding Fourier pairs> 3, f < f. Using the fact that
1-gw) ™ =Gi(w)G_(w) (A.21)
where
V2rT (3 —iw/4) expliw In(2)/4) B
¢ —iw/8rEG—iw/g

we can expresgi (w), after some algebraic manipulations as

G.(w) = G_(—w) (A.22)

X (w) = CF(w) + G+(w)(Qy + P*(w)) (A.23)
where
1 iw 2G.(id)exp(—2AL)
)= —+— Tw)y=="22 3 A.24
TN vy ST i (A 29
1 i(gl — w)
Prw)= ——— +-——>5 " = 109, A2
W ==o8 " Tonton(ay) ST (A.25)
Equations (A.19) and the definitions (A.18) give us
3 . 1 ig1 1 Bs
£0) = > Gl _AAy = — _ —
0+ (0) = 5 G R &XN=3A%) = 50 = ToNaen (AL) 2N G+(0) (A.26)
20 _ 4 g 424 4
J[r\l/(Ai) _ gl/ 3'81 + 181 3 + 313:t(n) (A27)
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Finally, using (A.23), (A.26) and (A.27) in (A.15) and approximating(|u|) =
V3exp—3ul), u > 1, we obtain the first-order correction for the lowest endify = EV
in the sector with: dislocations and colour parity,

Ey  scp_ vt (1 2

— — = —=+2X¢)+0(1/N A.28

N eoo 6N2 6 r ( / ) ( )
where

(N—n)? (1—e¢)?

XS = + . A.29
In particular, for the ground-state enenmgy= N, ¢ = 1, we have

EY _EY” scp v F 2

= = - —— +0(1/N A.30

= N = vz T O/N?) (A.30)

and comparing with (47) we obtain the value= 1 for the conformal anomaly. If we now
consider the gaps with respect to the ground-state with periodic boundary condition we obtain
ENC ES  2muScPxe 2
v N = w3 +0(1/N?).
Comparing this expression with (48) we obtain the conformal dimenstgnsThese values
are in perfect agreement with the operator content conjectured for the SCP and Baxter-Wu
model, presented in section 4.
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